Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization

  • Joaquín Torres-Sospedra
  • Carlos Hernández-Espinosa
  • Mercedes Fernández-Redondo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4087)


The two key factors to design an ensemble of neural networks are how to train the individual networks and how to combine the different outputs to get a single output. In this paper we focus on the combination module. We have proposed two methods based on Stacked Generalization as the combination module of an ensemble of neural networks. In this paper we have performed a comparison among the two versions of Stacked Generalization and six statistical combination methods in order to get the best combination method. We have used the mean increase of performance and the mean percentage or error reduction for the comparison. The results show that the methods based on Stacked Generalization are better than classical combiners.


Combination Method Error Reduction Single Network Individual Network Correct Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connection Science 8(3-4), 385–403 (1996)CrossRefGoogle Scholar
  2. 2.
    Raviv, Y., Intratorr, N.: Bootstrapping with noise: An effective regularization technique. Connection Science, Special issue on Combining Estimators 8, 356–372 (1996)Google Scholar
  3. 3.
    Hernandez-Espinosa, C., Fernandez-Redondo, M., Torres-Sospedra, J.: Ensembles of multilayer feedforward for classification problems. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 744–749. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Hernandez-Espinosa, C., Torres-Sospedra, J., Fernandez-Redondo, M.: New experiments on ensembles of multilayer feedforward for classification problems. In: Proceedings of International Conference on Neural Networks, IJCNN 2005, Montreal, Canada, pp. 1120–1124 (2005)Google Scholar
  5. 5.
    Torres-Sospedra, J., Fernandez-Redondo, M., Hernandez-Espinosa, C.: A research on combination methods for ensembles of multilayer feedforward. In: Proceedings of International Conference on Neural Networks, IJCNN 2005, Montreal, Canada, pp. 1125–1130 (2005)Google Scholar
  6. 6.
    Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 418–435 (1992)CrossRefGoogle Scholar
  7. 7.
    Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination of neural classifiers: A comparative study. Pattern Recognition Letters 20(4), 429–444 (1999)CrossRefGoogle Scholar
  8. 8.
    Jimenez, D., Walsh, N.: Dynamically weighted ensemble neural networks for classification. IEEE World Congress on Computational Intelligence 1, 753–756 (1998)Google Scholar
  9. 9.
    Wolpert, D.H.: Stacked generalization. Neural Networks 5(6), 1289–1301 (1994)MathSciNetGoogle Scholar
  10. 10.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)Google Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  12. 12.
    Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–849 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kuncheva, L., Whitaker, C.J.: Using diversity with three variants of boosting: Aggressive. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joaquín Torres-Sospedra
    • 1
  • Carlos Hernández-Espinosa
    • 1
  • Mercedes Fernández-Redondo
    • 1
  1. 1.Departamento de Ingenieria y Ciencia de los ComputadoresUniversitat Jaume ICastellonSpain

Personalised recommendations