Advertisement

Planning Under Uncertainty and Its Applications

  • Paolo Traverso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4155)

Abstract

Several application domains require planning techniques that model uncertainty in the results of both actions and observations. Actions may have different effects that cannot be predicted at planning time. Observations may result into uncertainty about the current state of the world. In this paper, we first discuss the problem of planning with uncertainty in action execution and observations. We then discuss how this problem can be relevant to different application domains that represent rather different characteristics, like planning for controlling a robot that has to perform a surveillance task, as well as planning for the automated composition of web services for e-commerce.

Keywords

Model Check Markov Decision Process Planning Domain Action Execution Plan Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, L.C., Cesta, A., Giunchiglia, E., Pistore, M., Traverso, P.: Planning and Verification Techniques for the High Level Programming and Monitoring of Autonomous Robotic Devices. In: Proceedings of the European Space Agency Workshop on On Board Autonoy, Noordwijk, The Netherlands, ESA (October 2001)Google Scholar
  2. 2.
    Aiello, L.C., Cesta, A., Giunchiglia, E., Traverso, P.: Merging Planning and Verification Techniques for ”Safe Planning” in Space Robotics. In: 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space: A New Space Odyssey (ISAIRAS 2001), Montreal, Canada (June 2001)Google Scholar
  3. 3.
    Albore, A., Bertoli, P.: Generating Safe Assumption-Based Plans for Partially Observable, Nondeterministic Domains. In: Proc. AAAI (2004)Google Scholar
  4. 4.
    Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process Execution Language for Web Services (version 1.1) (2003)Google Scholar
  5. 5.
    Bertoli, P., Cimatti, A., Pistore, M., Pistore, M.: A framework ofr Planning with Extended Goals and Partial Observability. In: Proceedings of ICAPS 2003 (2004)Google Scholar
  6. 6.
    Bertoli, P., Cimatti, A., Pistore, M., Traverso, P.: A Framework for Planning with Extended Goals under Partial Observability. In: Proc. ICAPS 2003, pp. 215–224 (2003)Google Scholar
  7. 7.
    Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning under Partial Observability via Symbolic Model Checking. Artificial IntelligenceGoogle Scholar
  8. 8.
    Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic domains under partial observability via symbolic model checking. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 473–478. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  9. 9.
    Bertoli, P., Cimatti, A., Traverso, P.: Interleaving Execution and Planning for Nondeterministic, Partially Observable Domains. In: Proceedings of ECAI 2004 (2004)Google Scholar
  10. 10.
    Bertoli, P., Pistore, M.: Planning with Extended Goals and Partial Observability. In: Proceedings of ICAPS 2004 (2004)Google Scholar
  11. 11.
    Bertoli, P., Pistore, M.: Planning with Extended Goals and Partial Observability. In: Proceedings of ICAPS 2004 (to be published, 2004) Google Scholar
  12. 12.
    Boutilier, C., Dean, T., Hanks, S.: Decision-Theoretic Planning: Structural Assumptions and Computational Leverage. Journal of AI Research (JAIR) 11, 1–94 (1999)MATHMathSciNetGoogle Scholar
  13. 13.
    Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, Strong, and Strong Cyclic Planning via Symbolic Model Checking. Artificial Intelligence 147(1-2), 35–84 (2003)MATHMathSciNetGoogle Scholar
  14. 14.
    Cimatti, A., Pistore, M., Traverso, P.: Automated planning. In: van Harmelen, F., Lifschitz, V. (eds.) Handbook of Knowledge Representation and Reasoning, ch. 21. Elsevier, Amsterdam (to appear, 2006)Google Scholar
  15. 15.
    De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for temporally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 226–238. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Edelkamp, S., Helmert, M.: On the implementation of mips. In: AIPS-Workshop on Model-Theoretic Approaches to Planning, pp. 18–25 (2000)Google Scholar
  17. 17.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, ch. 16, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)Google Scholar
  18. 18.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of Theorem Proving to Problem Solving. Artificial Intelligence 2(3-4), 189–208 (1971)MATHCrossRefGoogle Scholar
  19. 19.
    Genesereth, M., Nourbakhsh, I.: Time-saving tips for problem solving with incomplete information. In: Proceedings of the National Conference on Artificial Intelligence (1993)Google Scholar
  20. 20.
    Goldman, R.P., Musliner, D.J., Krebsbach, K.D., Boddy, M.S.: Dynamic abstraction planning. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference (AAAI 1997) (IAAI 1997), pp. 680–686. AAAI Press, Menlo Park (1997)Google Scholar
  21. 21.
    Goldman, R.P., Musliner, D.J., Pelican, M.J.: Using Model Checking to Plan Hard Real-Time Controllers. In: Proceeding of the AIPS2k Workshop on Model-Theoretic Approaches to Planning, Breckeridge, Colorado (April 2000)Google Scholar
  22. 22.
    Goldman, R.P., Pelican, M., Musliner, D.J.: Hard Real-time Mode Logic Synthesis for Hybrid Control: A CIRCA-based approach. In: Working notes of the 1999 AAAI Spring Symposium on Hybrid Control (March 1999)Google Scholar
  23. 23.
    Jensen, R., Veloso, M.: OBDD-based Universal Planning for Synchronized Agents in Non-Deterministic Domains. Journal of Artificial Intelligence Research 13, 189–226 (2000)MATHMathSciNetGoogle Scholar
  24. 24.
    Jensen, R.M., Veloso, M.M., Bowling, M.H.: OBDD-based optimistic and strong cyclic adversarial planning. In: Proceedings of the Sixth European Conference on Planning (ECP 2001) (2001)Google Scholar
  25. 25.
    Kabanza, F., Barbeau, M., St-Denis, R.: Planning control rules for reactive agents. Artificial Intelligence 95(1), 67–113 (1997)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Koenig, S., Simmons, R.: Solving robot navigation problems with initial pose uncertainty using real-time heuristic search. In: Proceedings of the International Conference on Artificial Intelligence Planning and Scheduling (1998)Google Scholar
  27. 27.
    Dal Lago, U., Pistore, M., Traverso, P.: Planning with a language for extended goals. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, AAAI 2002 (2002)Google Scholar
  28. 28.
    Peot, M., Smith, D.: Conditional Nonlinear Planning. In: Hendler, J. (ed.) Proceedings of the First International Conference on AI Planning Systems, College Park, Maryland, June 15-17, 1992, pp. 189–197. Morgan Kaufmann, San Francisco (1992)Google Scholar
  29. 29.
    Petrick, R., Bacchus, F.: A knowledge-based approach to planning with incomplete information and sensing. In: Proceedings of the Sixth International Conference on AI Planning and Scheduling, AIPS 2002 (2002)Google Scholar
  30. 30.
    Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-deterministic domains. In: Nebel, B. (ed.) Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 479–486. Morgan Kaufmann Publisher, San Francisco (2001)Google Scholar
  31. 31.
    Pryor, L., Collins, G.: Planning for Contingency: a Decision Based Approach. Journal of Artificial Intelligence Research (JAIR) 4, 81–120 (1996)Google Scholar
  32. 32.
    Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. Journal of Artificial Intellegence Research 10, 323–352 (1999)MATHGoogle Scholar
  33. 33.
    Rintanen, J.: Improvements to the Evaluation of Quantified Boolean Formulae. In: Dean, T. (ed.) 16th Iinternational Joint Conference on Artificial Intelligence, pp. 1192–1197. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  34. 34.
    Traverso, P., Pistore, M.: Automated composition of semantic web services into executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Weld, D.S., Anderson, C.R., Smith, D.E.: Extending graphplan to handle uncertainty and sensing actions. In: Daniel, S., Weld, C.R. (eds.) Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998) and of the 10th Conference on Innovative Applications of Artificial Intelligence (IAAI-1998), pp. 897–904. AAAI Press, Menlo Park (1998)Google Scholar
  36. 36.
    Wilkins, D.E.: Domain-independent Planning: representation and plan generation. Artificial Intelligence 22(3), 269–301 (1984)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Wilkins, D.E.: Practical Planning: Extending the classical AI planning paradigm. Morgan Kaufmann, San Mateo (1988)Google Scholar
  38. 38.
    Wilkins, D.E.: Recovering from execution errors in SIPE. Computational Intelligence 1, 33–45 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Traverso
    • 1
  1. 1.ITC-irstPovo - TrentoItaly

Personalised recommendations