Searching in a Maze, in Search of Knowledge: Issues in Early Artificial Intelligence

  • Roberto Cordeschi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4155)


Heuristic programming was the first area in which AI methods were tested. The favourite case-studies were fairly simple toy- problems, such as cryptarithmetic, games, such as checker or chess, and formal problems, such as logic or geometry theorem-proving. These problems are well-defined, roughly speaking, at least in comparison to real-life problems, and as such have played the role of Drosophila in early AI. In this chapter I will investigate the origins of heuristic programming and the shift to more knowledge-based and real-life problem solving.


Problem Space Problem Representation Task Environment Game Tree Common Sense Knowledge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, L., Levi, G.: The Uses of Metaknowledge in AI Systems. In: Maes, P., Nardi, D. (eds.) Meta-level Architectures and Reflection. North Holland, Amsterdam (1988)Google Scholar
  2. 2.
    Amarel, S.: On the Mechanization of Creative Processes. IEEE Spectrum 3, 112–114 (1966)CrossRefGoogle Scholar
  3. 3.
    Amarel, S.: On Representations of Problems of Reasoning About Actions. In: Michie, D. (ed.) Machine Intelligence 3, pp. 131–171. Edinburgh University Press, Edinburgh (1968)Google Scholar
  4. 4.
    Amarel, S.: On the Representation of Problems and Goal-Directed Procedures for Computers. In: Banerji, R., Mesarovic, M. (eds.) Theoretical Approaches to Non-Numerical Problem Solving, pp. 179–244. Springer, Heidelberg (1970)Google Scholar
  5. 5.
    Amarel, S.: Problems of Representation in Heuristic Problem Solving: Related Issues in the Development of Expert Systems. In: Groner, R., Groner, M., Bischof, W.F. (eds.) Methods of Heuristics, pp. 245–350. Erlbaum, Hillsdale (1983)Google Scholar
  6. 6.
    Barr, A., Feigenbaum, E.F. (eds.): The Handbook of Artificial Intelligence, vol. 1. HeurisTech and Kaufmann, Stanford and Los Altos (1981)MATHGoogle Scholar
  7. 7.
    Carlucci Aiello, L., Nardi, D., Pirri, F.: Case Studies in Cognitive Robotics. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds.) Human and Machine Perception 3: Thinking, Deciding, and Acting. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  8. 8.
    Coles, S.L.: Computer Chess: The Drosophila of AI. AI Expert 9, 25–32 (1994)Google Scholar
  9. 9.
    Cordeschi, R.: The Role of Heuristics in Automated Theorem Proving. J.A. Robinson’s Resolution Principle. Mathware and Soft Computing 3, 281–293 (1996)Google Scholar
  10. 10.
    Cordeschi, R.: The Discovery of the Artificial. Behavior: Mind and Machines Before and Beyond Cybernetics. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  11. 11.
    Cordeschi, R.: IA Turns Fifty: Revisiting its Origins. Applied Artificial Intelligence, 21 (forthcoming, 2007)Google Scholar
  12. 12.
    Cordeschi, R.: Steps Towards the Synthetic Method. Symbolic Information Processing and Self-Organizing Systems in Early Artificial Intelligence Modeling. In: Wheeler, M., Husbands, P., Holland, O. (eds.) The Mechanisation of Mind in History. MIT Press, Cambridge (forthcoming, 2007)Google Scholar
  13. 13.
    Crevier, D.: AI. The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York (1993)Google Scholar
  14. 14.
    Ernst, G.W., Newell, A.: GPS: A Case Study in Generality and Problem Solving. Academic Press, New York (1969)Google Scholar
  15. 15.
    Feigenbaum, E.A.: Artificial Intelligence: Themes in the Second Decade. In: Proceedings IFIPS 1968, pp. 1008–1022. North-Holland, Amsterdam (1969)Google Scholar
  16. 16.
    Feigenbaum, E.A.: The Art of Artificial Intelligence: Themes and Case Studies of Knowledge Engineering. In: Proceedings IJCAI 1977, Cambridge, MA, pp. 1014–1029 (1977)Google Scholar
  17. 17.
    Feigenbaum, E.A., Feldman, J. (eds.): Computers and Thought. McGraw-Hill, New York (1963)MATHGoogle Scholar
  18. 18.
    Feigenbaum, E.A., McCorduck, P.: The Fifth Generation. Signet, New York (1983)Google Scholar
  19. 19.
    Feigenbaum, E.A., Buchanan, B.G., Lederberg, J.: On Generality and Problem Solving: A Case Study Using DENDRAL Program. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 6, pp. 165–190. Edinburgh University Press, Edinburgh (1971)Google Scholar
  20. 20.
    Gelernter, H.L., Rochester, N.: Intelligent Behavior in Problem-Solving Machines. IBM Journal of Research and Development 2, 336–345 (1958)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hodges, A.: Alan Turing: the Enigma. Simon and Schuster, New York (1983)MATHGoogle Scholar
  22. 22.
    Kahneman, D., Frederick, S.: Attribute Substitution in Intuitive Judgement. In: Augier, M., March, J.G. (eds.) Models of Man. Essays in Memory of Herbert A. Simon. MIT Press, Cambridge (2004)Google Scholar
  23. 23.
    Lenat, D.: On Automated Scientific Theory Formation: A Case Study Using the AM Program. In: Hayes, J.E., Michie, D., Mikulich, L.J. (eds.) Machine Intelligence 9, Halsted, New York, pp. 251–283 (1979)Google Scholar
  24. 24.
    Lenat, D.: Applied Ontology Issues. Applied Ontology 1, 9–12 (2005)Google Scholar
  25. 25.
    Lenat, D., Feigenbaum, E.A.: On the Thresholds of Knowledge. Artificial Intelligence 47, 185–250 (1991)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mahoney, J.T.: Economic Foundations of Strategy. Sage, London (2004)Google Scholar
  27. 27.
    Matuszek, C., Witbrock, M., Kahlert, R.C., Cabral, J., Schneider, D., Shah, P., Lenat, D.: Searching for Common Sense: Populating CycTM from the Web (2005),
  28. 28.
    McCarthy, J.: Computers with Common Sense. In: Proceedings of the Symposium on Mechanisation of Thought Processes, vol. 1, pp. 77–91. H.M. Stationary Office, Teddington (1959)Google Scholar
  29. 29.
    McCarthy, J.: Epistemological Problems of Artificial Intelligence. In: Proceedings IJCAI 1977, Cambridge, MA, pp. 1038–1044 (1977)Google Scholar
  30. 30.
    McCarthy, J.: Circumscription-a Form of Non-Monotonic Reasoning. Artificial Intelligence 13, 27–39 (1980)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edinburgh University Press, Edinburgh (1969)Google Scholar
  32. 32.
    Minsky, M.L.: Some Methods of Heuristic Programming and Artificial Intelligence. In: Proceedings of the Symposium on Mechanisation of Thought Processes, vol. 1, pp. 5–36. H.M. Stationary Office, Teddington (1959)Google Scholar
  33. 33.
    Minsky, M.L. (ed.): Semantic Information Processing. MIT Press, Cambridge (1968)MATHGoogle Scholar
  34. 34.
    Minsky, M.L.: A Framework for Representing Knowledge. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York (1975)Google Scholar
  35. 35.
    Neumann, J., von Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)Google Scholar
  36. 36.
    Newell, A.: Some Problems of Basic Organization in Problem-Solving Programs. In: Yovits, M.C., Jacobi, G.T., Goldstein, G.D. (eds.) Self-organizing systems. Spartan Books, Washington (1962)Google Scholar
  37. 37.
    Newell, A.: On the Representations of Problems. Computer Science Research Review, Carnegie Institute of Technology, Pittsburgh, pp. 19–33 (1966)Google Scholar
  38. 38.
    Newell, A.: Heuristic Programming: Ill-Structured Problems. In: Aronofsky, J.S. (ed.) Progress in Operations Research, vol. 3. Wiley, New York (1969)Google Scholar
  39. 39.
    Newell, A., Simon, H.A.: GPS: A Program that Simulates Human Thought. In: Billings, H. (ed.) Lernende Automaten. R. Oldenbourg, Munchen (1961); Reprinted in Feigenbaum, E.A., Feldman, J. (eds.), 279–293 (1963)Google Scholar
  40. 40.
    Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  41. 41.
    Newell, A., Shaw, J.C., Simon, H.A.: Elements of a Theory of Human Problem-Solving. Psychological Review 65, 151–166 (1958)CrossRefGoogle Scholar
  42. 42.
    Newell, A., Shaw, J.C., Simon, H.A.: Report on a General Problem-Solving Program for a Computer. In: Proceedings of the International Conference on Information Processing, UNESCO, Paris, pp. 256–264 (1960)Google Scholar
  43. 43.
    Newell, A., Shaw, J.C., Simon, H.A.: The Processes of Creative Thinking. In: Gruber, H.E., Tirrel, G., Wertheimer, H. (eds.) Contemporary Approaches to Creative Thinking, Atherton, New York, pp. 63–119 (1962)Google Scholar
  44. 44.
    Nilsson, N.J.: Problem Solving Methods in Artificial Intelligence. McGraw-Hill, New York (1971)Google Scholar
  45. 45.
    Paulson, L.C.: A Simple Formalization and Proof for the Mutilated Chess Board. Logic Journal of the IGPL 9, 499–509 (2001)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Pirrone, R., Pilato, G., Rizzo, R., Russo, G.: Learning Path Generation By Domain Ontology Transformation. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005: Advances in Artificial Intelligence, pp. 359–369. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  47. 47.
    Reitman, W.R.: Heuristic Decision Procedures, Open Constraints, and the Structure of Ill-Defined Problems. In: Shelley, M.W., Rryan, G.L. (eds.) Human Judgments and Optimality, pp. 282–315. Wiley, New York (1964)Google Scholar
  48. 48.
    Samuel, A.L.: Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development 3 (1959); Reprinted in Feigenbaum, E.A., Feldman, J. (eds.), pp. 71–105 (1963)Google Scholar
  49. 49.
    Samuel, A.L.: Programming Computers to Play Games. In: Alt, F.L. (ed.) Advances in Computers, vol. 1, pp. 165–192. Academic Press, New York (1960)Google Scholar
  50. 50.
    Shannon, C.E.: Programming a Computer for Playing Chess. Philosophical Magazine 41, 256–275 (1950)MATHMathSciNetGoogle Scholar
  51. 51.
    Simon, H.A.: A Behavioral Model of Rational Choice. Quarterly Journal of Economics 69, 99–118 (1955)CrossRefGoogle Scholar
  52. 52.
    Simon, H.A.: The Theory of Problem Solving. Proceedings of IFIP Congress, 261–277 (1972)Google Scholar
  53. 53.
    Simon, H.A.: The Structure of Ill-Structured Problems. Artificial Intelligence 4, 181–201 (1973)CrossRefGoogle Scholar
  54. 54.
    Simon, H.A.: Information Processing Theory of Human Problem Solving. In: Estes, W.K. (ed.) Handbook of Learning and Cognitive Processes, vol. 5, pp. 271–295. Erlbaum, Hillsdale (1978)Google Scholar
  55. 55.
    Simon, H.A.: Models of Thought. Yale University Press, New Haven (1979)Google Scholar
  56. 56.
    Simon, H.A.: Search and Reasoning in Problem Solving. Artificial Intelligence 21, 7–29 (1983)CrossRefGoogle Scholar
  57. 57.
    Simon, H.A.: A Very Early Expert System. IEEE Annals of the History of Computing 15, 64–68 (1993)CrossRefGoogle Scholar
  58. 58.
    Simon, H.A., Newell, A.: Heuristic Problem Solving: The Next Advance in Operations Research. Operations Research 6, 1–10 (1958)CrossRefGoogle Scholar
  59. 59.
    Simon, H.A., Siklóssy, L. (eds.): Representation and Meaning. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  60. 60.
    Slage, J.R.: Artificial Intelligence: The Heuristic Programming Approach. McGraw-Hill, New York (1971)Google Scholar
  61. 61.
    Smith, B.C.: Prologue to Reflection and Semantics in a Procedural Language. In: Brachman, R.J., Levesque, H.J. (eds.) Readings in Knowledge Representation, pp. 31–39. Morgan Kaufmann, Los Altos (1985)Google Scholar
  62. 62.
    Wiener, N.: Cybernetics, or Control and Communication in the Animal and the Machine, 2nd edn. MIT Press, Cambridge (1961)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Cordeschi
    • 1
  1. 1.Dipartimento di Studi Filosofici ed EpistemologiciUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations