Computing and Visualizing Lattices of Subgroups Using Relation Algebra and RelView

  • Rudolf Berghammer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4136)


We model groups as relational systems and develop relation-algebraic specifications for direct products of groups, quotient groups, and the enumeration of all subgroups and normal subgroups. The latter two specifications immediately lead to specifications of the lattices of subgroups and normal subgroups, respectively. All specifications are algorithmic and can directly be translated into the language of the computer system RelView. Hence, the system can be used for constructing groups and for computing and visualizing their lattices of subgroups and normal subgroups. This is demonstrated by some examples.


Normal Subgroup Maximal Subgroup Quotient Group Neutral Point Neutral Element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnke, R., et al.: RelView – A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R., Hoffmann, T.: Modelling sequences within the RelView system. J. Universal Comput. Sci. 7, 107–113 (2001)MathSciNetMATHGoogle Scholar
  3. 3.
    Berghammer, R., Neumann, F.: RelView– An OBDD-based Computer Algebra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Berghammer, R.: Computation of cut completions and concept lattices using relational algebra and RelView. J. Rel. Meth. in Comput. Sci. 1, 50–72 (2004)Google Scholar
  5. 5.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relation algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  7. 7.
    Freese, R., Jezek, J., Nation, J.B.: Free lattices. In: Mathematical Surveys and Monographs. American Math. Society, vol. 42 (1995)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal concept analysis. Springer, Heidelberg (1999)MATHGoogle Scholar
  9. 9.
    Hermes, H.: Introduction to lattice theory (in German), 2nd edn. Springer, Heidelberg (1967)Google Scholar
  10. 10.
    Hulpke, A.: Computing normal subgroups. In: Proc. Int. Symposium on Symbolic and Algebraic Computation, pp. 194–198. ACM Press, New York (1998)Google Scholar
  11. 11.
    Lang, S.: Algebra, 3rd edn. Springer, Heidelberg (2002)MATHGoogle Scholar
  12. 12.
    Leoniuk, B.: ROBDD-based implementation of relational algebra with applications (in German). Ph.D. thesis, Inst. für Informatik und Prak. Math., Univ. Kiel (2001)Google Scholar
  13. 13.
    Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation and visualization of relations (in German). Ph.D. thesis, Inst. für Informatik und Prak. Math., Univ. Kiel (2003)Google Scholar
  14. 14.
    Schmidt, G., Ströhlein, T.: Relations and graphs. Springer, Heidelberg (1993)MATHGoogle Scholar
  15. 15.
    Schmidt, R.: Subgroup lattices of groups, de Gruyter (1994)Google Scholar
  16. 16.
    Tarski, A.: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  1. 1.Institut für Informatik und Praktische Mathematik ChristianAlbrechts-Universität KielKiel

Personalised recommendations