On the Fixpoint Theory of Equality and Its Applications

  • Andrzej Szałas
  • Jerzy Tyszkiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4136)


In the current paper we first show that the fixpoint theory of equality is decidable. The motivation behind considering this theory is that second-order quantifier elimination techniques based on a theorem given in [16], when successful, often result in such formulas. This opens many applications, including automated theorem proving, static verification of integrity constraints in databases as well as reasoning with weakest sufficient and strongest necessary conditions.


Relational Database Decision Procedure Classical Logic Expressive Power Fixpoint Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1996)Google Scholar
  2. 2.
    Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Mathematische Annalen 110, 390–413 (1935)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barwise, J.: On Moschovakis closure ordinals. Journal of Symbolic Logic 42, 292–296 (1977)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Chandra, Harel., D.: Computable queries for relational databases. Journal of Computer and System Sciences 21, 156–178 (1980)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chandra, Harel, D.: Structure and complexity of relational queries. Journal of Com-puter and System Sciences 25, 99–128 (1982)CrossRefMATHGoogle Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI (IJCAI’2001), pp. 145–151 (2000)Google Scholar
  8. 8.
    Immerman, N.: Upper and lower bounds for first-order expressibility. Journal of Computer and System Sciences 25, 76–98 (1982)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 97–109. Springer Physica-Verlag, Heidelberg (2001)Google Scholar
  10. 10.
    Kolaitis, P., Vardi, M.: On the expressive power of variable-confined logics. In: Proc. IEEE Conf. Logic in Computer Science, pp. 348–359 (1996)Google Scholar
  11. 11.
    Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Artificial Intelligence and Logic Programming, vol. 3, pp. 297–352. Oxford University Press, Oxford (1991)Google Scholar
  12. 12.
    Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. 7th International Conf. on Principles of Knowl-edge Representation and Reasoning, KR2000, pp. 167–175. Morgan Kaufmann, San Francisco (2000)Google Scholar
  13. 13.
  14. 14.
    McCarthy, J.: Circumscription: A form of non-monotonic reasoning. Artificial Intelligence Journal 13, 27–39 (1980)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)Google Scholar
  16. 16.
    Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orłowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa. Studies in Fuzziness and Soft Computing, vol. 24, pp. 307–328. Springer Physica-Verlag, Heidelberg (1998)Google Scholar
  17. 17.
    Poizat, B.: Deux ou trois choses que je sais de Ln. Journal of Symbolic Logic 47, 641–658 (1982)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrzej Szałas
    • 1
    • 2
  • Jerzy Tyszkiewicz
    • 3
  1. 1.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.The University of Economics and Computer ScienceOlsztynPoland
  3. 3.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations