Advertisement

Monotone Predicate Transformers as Up-Closed Multirelations

  • Ingrid Rewitzky
  • Chris Brink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4136)

Abstract

In the study of semantic models for computations two independent views predominate: relational models and predicate transformer semantics. Recently the traditional relational view of computations as binary relations between states has been generalised to multirelations between states and properties allowing the simultaneous treatment of angelic and demonic nondeterminism. In this paper the two-level nature of multirelations is exploited to provide a factorisation of up-closed multirelations which clarifies exactly how multirelations model nondeterminism. Moreover, monotone predicate transformers are, in the precise sense of duality, up-closed multirelations. As such they are shown to provide a notion of effectivity of a specification for achieving a given postcondition.

Keywords

Binary Relation Boolean Algebra Monotone Operator Semantic Model Bijective Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John Wiley and Sons, Inc, Chichester (1991)Google Scholar
  2. 2.
    Back, R.J.R., von Wright, J.: Combining angels, demons and miracles in program specifications. Theoretical Computer Science 100, 365–383 (1992)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Back, R.J.R., von Wright, J.J.: Refinement Calclulus: A Systematic Introduction. Graduate Texts in Computer Science. Springer, New York (1998)Google Scholar
  4. 4.
    Bargenda, H.W., Brink, C., Vajner, V.: Categorical aspects of power algebras. Quaestiones Mathematica 16, 133–147 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs (1997)MATHGoogle Scholar
  6. 6.
    Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Brink, C.: Power structures. Algebra Universalis 30, 177–216 (1993)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Brink, C., Rewitzky, I.: A Paradigm for Program Semantics: Power Structures and Duality. CSLI Publications, Stanford (2001)Google Scholar
  9. 9.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Communications of the ACM 18(8), 453–458 (1975)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey (1976)MATHGoogle Scholar
  11. 11.
    Gardiner, P.H., Morgan, C.C.: Data refinement of predicate transformers. Theoretical Computer Science 87(1), 143–162 (1991)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Gardiner, P.H., Martin, C.E., de Moor, O.: An algebraic construction of predicate transformers. Science of Computer Programming 22(1-2), 21–44 (1994)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Mathematica Japonica 40(2), 207–215 (1994)MathSciNetMATHGoogle Scholar
  14. 14.
    Gehrke, M., Jónsson, B.: Monotone bounded distributive lattice expansions. Mathematica Japonica 52(2), 197–213 (2000)MathSciNetMATHGoogle Scholar
  15. 15.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–583 (1969)CrossRefMATHGoogle Scholar
  16. 16.
    Hoare, C.A.R.: An algebra of games of choice. Unpublished manuscript, 4 pages (1996)Google Scholar
  17. 17.
    Jónsson, B., Tarski, A.: Boolean algebras with operators I. American Journal of Mathematics 73, 891–939 (1951)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Martin, C., Curtis, S., Rewitzky, I.: Modelling nondeterminism. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 228–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Morgan, C.C.: The specification statement. Transactions of Programming Language Systems 10(3), 403–491 (1998)CrossRefGoogle Scholar
  20. 20.
    Morgan, C.C., Robertson, K.A.: Specification statements and refinement. IBM Journal of Research and Development 31(5), 546–555 (1987)CrossRefMATHGoogle Scholar
  21. 21.
    Nelson, G.: A generalisation of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems 11(4), 517–562 (1989)CrossRefGoogle Scholar
  22. 22.
    Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society 2, 186–190 (1970)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Rewitzky, I., Brink, C.: Predicate transformers as power operations. Formal Aspects of Computing 7, 169–182 (1995)CrossRefMATHGoogle Scholar
  24. 24.
    Rewitzky, I.: Binary multirelations. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 259–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Stone, M.H.: Topological representations of distributive lattices and Brouwerian logics. Casopis Pro Potování Mathematiky 67, 1–25 (1937)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ingrid Rewitzky
    • 1
  • Chris Brink
    • 1
  1. 1.Department of Mathematical SciencesUniversity of StellenboschSouth Africa

Personalised recommendations