Advertisement

Finite Symmetric Integral Relation Algebras with No 3-Cycles

  • Roger D. Maddux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4136)

Abstract

The class of finite symmetric integral relation algebras with no 3-cycles is a particularly interesting and easily analyzable class of finite relation algebras. For example, it contains algebras that are not representable, algebras that are representable only on finite sets, algebras that are representable only on infinite sets, algebras that are representable on both finite and infinite sets, and there is an algorithm for determining which case holds.

Keywords

Equivalence Relation Boolean Algebra Relation Algebra Cycle Parameter Algebraic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jipsen, P.: Varieties of symmetric subadditive relation algebras. Preprint, pp. 3 (1990)Google Scholar
  2. 2.
    Comer, S.D.: Extension of polygroups by polygroups and their representations using color schemes. In: Universal algebra and lattice theory (Puebla, 1982). Lecture Notes in Math, vol. 1004, pp. 91–103. Springer, Berlin (1983)CrossRefGoogle Scholar
  3. 3.
    Tuza, Z.: Representations of relation algebras and patterns of colored triplets. In: Algebraic logic (Budapest, 1988). Colloq. Math. Soc. János Bolyai, vol. 54, pp. 671–693. North-Holland, Amsterdam (1991)Google Scholar
  4. 4.
    Huntington, E.V.: New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica. Trans. Amer. Math. Soc. 35(1), 274–304 (1933)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Huntington, E.V.: Boolean algebra. A correction to: “New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica” [Trans. Amer. Math. Soc. 35 (1933), no. 1, pp. 274–304, 1501684]. Trans. Amer. Math. Soc. 35(2), pp. 557–558 (1933)Google Scholar
  6. 6.
    Huntington, E.V.: A second correction to: “New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica” [Trans. Amer.Math. Soc. 35, no. 1, 274-304; 1501684 (1933)]. Trans. Amer. Math. Soc. 35(4), 971 (1933)Google Scholar
  7. 7.
    Maddux, R.D.: Some varieties containing relation algebras. Trans. Amer. Math. Soc. 272(2), 501–526 (1982)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  9. 9.
    Tarski, A.: Contributions to the theory of models. III. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 56–64 (1955) = Indagationes Math. 17, 56-64 (1955)Google Scholar
  10. 10.
    Maddux, R.D.: Some sufficient conditions for the representability of relation algebras. Algebra Universalis 8(2), 162–172 (1978)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Jónsson, B.: Varieties of relation algebras. Algebra Universalis 15(3), 273–298 (1982)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Jónsson, B.: The theory of binary relations. In: Andréka, H., Monk, J.D., Németi, I. (eds.) Algebraic Logic (Budapest, 1988). Colloquia Mathematica Societatis János Bolyai, vol. 54, pp. 245–292. North-Holland, Amsterdam (1991)Google Scholar
  13. 13.
    Hirsch, R., Hodkinson, I.: Relation algebras by games. Studies in Logic and the Foundations of Mathematics, vol. 147. North-Holland Publishing Co., Amsterdam (2002), With a foreword by Wilfrid HodgesMATHGoogle Scholar
  14. 14.
    Birkhoff, G.: On the structure of abstract algebras. Proc. Cambridge Philos. Soc. 31, 433–454 (1935)CrossRefGoogle Scholar
  15. 15.
    Monk, J.D.: On representable relation algebras. Michigan Math. J. 11, 207–210 (1964)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Jónsson, B.: Representation of modular lattices and of relation algebras. Trans. Amer. Math. Soc. 92, 449–464 (1959)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Lyndon, R.C.: The representation of relational algebras. Ann. of Math. 51(2), 707–729 (1950)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Backer, F.: Representable relation algebras. Report for a seminar on relation algebras conducted by A. Tarski, mimeographed, University of California, Berkeley (Spring 1970)Google Scholar
  19. 19.
    McKenzie, R.N.: The representation of relation algebras. PhD thesis, University of Colorado, Boulder (1966)Google Scholar
  20. 20.
    Wostner, U.: Finite relation algebras. Notices of the AMS 23, A–482 (1976)Google Scholar
  21. 21.
    Maddux, R.D.: Topics in Relation Algebras. PhD thesis, University of California, Berkeley (1978)Google Scholar
  22. 22.
    Comer, S.D.: Multivalued loops and their connection with algebraic logic. In: monograph, pp. 173 (1979)Google Scholar
  23. 23.
    Comer, S.D.: Multi-Valued Algebras and their Graphical Representation. In: monograph, pp. 103 (July 1986) Google Scholar
  24. 24.
    Jipsen, P.: Computer-aided investigations of relation algebras. PhD thesis, Vanderbilt University (1992)Google Scholar
  25. 25.
    Jipsen, P., Lukács, E.: Representability of finite simple relation algebras with many identity atoms. In: Algebraic logic (Budapest, 1988). Colloq. Math. Soc. János Bolyai, vol. 54, pp. 241–244. North-Holland, Amsterdam (1991)Google Scholar
  26. 26.
    Jipsen, P., Lukács, E.: Minimal relation algebras. Algebra Universalis 32(2), 189–203 (1994)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Andréka, H., Maddux, R.D.: Representations for small relation algebras. Notre Dame J. Formal Logic 35(4), 550–562 (1994)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Birkhoff, G.: Subdirect unions in universal algebra. Bull. Amer. Math. Soc. 50, 764–768 (1944)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Maddux, R.D.: Pair-dense relation algebras. Trans. Amer. Math. Soc. 328(1), 83–131 (1991)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    The GAP Group Aachen, St Andrews: GAP – Groups, Algorithms, and Programming, Version 4.2. (1999) , http://www-gap.dcs.st-and.ac.uk/~gap

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roger D. Maddux
    • 1
  1. 1.Department of MathematicsIowa State UniversityAmesU.S.A.

Personalised recommendations