Max-Plus Convex Geometry

  • Stéphane Gaubert
  • Ricardo Katz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4136)


Max-plus analogues of linear spaces, convex sets, and polyhedra have appeared in several works. We survey their main geometrical properties, including max-plus versions of the separation theorem, existence of linear and non-linear projectors, max-plus analogues of the Minkowski-Weyl theorem, and the characterization of the analogues of “simplicial” cones in terms of distributive lattices.


Convex Subset Distributive Lattice Discrete Event System Separation Theorem Extreme Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korbut, A.A.: Extremal spaces. Dokl. Akad. Nauk SSSR 164, 1229–1231 (1965)MathSciNetGoogle Scholar
  2. 2.
    Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.- Mat. Obzor 13(2), 179–201 (1977)MathSciNetGoogle Scholar
  3. 3.
    Maslov, V.P., Samborskiĭ, S.N.: Idempotent analysis. Advances in Soviet Mathematics. Amer. Math. Soc., vol. 13, Providence (1992)Google Scholar
  4. 4.
    Litvinov, G., Maslov, V., Shpiz, G.: Idempotent functional analysis: an algebraic approach. Math. Notes 69(5), 696–729 (2001)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Cohen, G., Gaubert, S., Quadrat, J.P.: Duality and separation theorems in idempotent semimodules. Linear Algebra and Appl. 379, 395–422 (2004), arXiv:math.FA/0212294CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Rubinov, A.M.: Abstract convexity and global optimization. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  7. 7.
    Cohen, G., Gaubert, S., Quadrat, J.: Max-plus algebra and system theory: where we are and where to go now. Annual Reviews in Control 23, 207–219 (1999)Google Scholar
  8. 8.
    Kolokoltsov, V.N., Maslov, V.P.: Idempotent analysis and applications. Kluwer Academic Publishers, Dordrecht (1997)MATHGoogle Scholar
  9. 9.
    Fathi, A.: Weak KAM theorem in Lagrangian dynamics. Lecture notes, preliminary version. Cambridge University Press, Cambridge (2005) (to appear)Google Scholar
  10. 10.
    Akian, M., Gaubert, S., Walsh, C.: The max-plus Martin boundary. arXiv:math.MG/0412408 (2004)Google Scholar
  11. 11.
    Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math. 9, 1–27 (2004)(Erratum pp. 205-206)MathSciNetMATHGoogle Scholar
  12. 12.
    Cohen, G., Gaubert, S., Quadrat, J., Singer, I.: Max-plus convex sets and functions. In: Litvinov, G.L., Maslov, V.P. (eds.): Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics. American Mathematical Society, pp. 105–129. Also ESI Preprint 1341, arXiv:math.FA/0308166 (2005)Google Scholar
  13. 13.
    Gaubert, S., Katz, R.: The Minkowski theorem for max-plus convex sets. arXiv:math.GM/0605078 (2006)Google Scholar
  14. 14.
    Cohen, G., Gaubert, S., Quadrat, J.P.: Regular matrices in max-plus algebra (2006) (Preprint )Google Scholar
  15. 15.
    Katz, R.D.: Max-plus (A,B)-invariant spaces and control of timed discrete event systems. E-print arXiv:math.OC/0503448, to appear in IEEE-TAC (2005)Google Scholar
  16. 16.
    Akian, M., Gaubert, S., Walsh, C.: Discrete max-plus spectral theory. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics. American Mathematical Society, pp. 19–51 (2005), Also ESI Preprint 1485, arXiv:math.SP/0405225Google Scholar
  17. 17.
    Akian, M., Bapat, R., Gaubert, S.: Max-plus algebras. In: Hogben, L., Brualdi, R., Greenbaum, A., Mathias, R. (eds.) Handbook of Linear Algebra, Chapman and Hall, Boca Raton (2006)Google Scholar
  18. 18.
    Akian, M., Gaubert, S., Kolokoltsov, V.: Solutions of max-plus linear equations and large deviations. In: Proceedings of the joint 44th IEEE Conference on Decision and Control and European Control Conference ECC (CDC-ECC’05), Seville, Espagne (2005), arXiv:math.PR/0509279Google Scholar
  19. 19.
    Walsh, C.: The horofunction boundary of finite-dimensional normed spaces. In: Math. Proc. of the Cambridge. Phil. Soc., arXiv:math.GT/0510105 (2005) (to appear)Google Scholar
  20. 20.
    Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  21. 21.
    Akian, M., Gaubert, S., Kolokoltsov, V.N.: Set coverings and invertibility of functional Galois connections. In: Litvinov, G.L., Maslov, V.P. (eds.): Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics. American Mathematical Society, pp. 19–51 (2005) , Also ESI Preprint 1447, arXiv:math.FA/0403441.Google Scholar
  22. 22.
    Gaubert, S., Gunawardena, J.: The Perron-Frobenius theorem for homogeneous, monotone functions. Trans. of AMS 356(12), 4931–4950 (2004)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Rubinov, A.M., Singer, I.: Topical and sub-topical functions, downward sets and abstract convexity. Optimization 50(5-6), 307–351 (2001)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Gunawardena, J.: From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Theoretical Computer Science 293, 141–167 (2003)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Dhingra, V., Gaubert, S., Gunawardena, J.: Policy iteration algorithm for large scale deterministic games with mean payoff (2006) (Preprint)Google Scholar
  26. 26.
    Cochet-Terrasson, J., Gaubert, S., Gunawardena, J.: A constructive fixed point theorem for min-max functions. Dynamics and Stability of Systems 14(4), 407–433 (1999)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Gaubert, S., Gunawardena, J.: The duality theorem for min-max functions. C. R. Acad. Sci. Paris. 326, Série I, 43-48 (1998)Google Scholar
  28. 28.
    Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for computing fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. arXiv:math.OC/0603619 (2006)Google Scholar
  30. 30.
    Samborskii, S.N., Shpiz, G.B.: Convex sets in the semimodule of bounded functions. In: Idempotent analysis. Amer. Math. Soc., Providence, RI, pp. 135–137 (1992)Google Scholar
  31. 31.
    Joswig, M.: Tropical half spaces. In: Combinatorial and computation algeometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 409–431. Cambridge Univ. Press, Cambridge (2005)Google Scholar
  32. 32.
    Butkovic, P., Schneider, H., Sergeev, S.: Generators, extremals and bases of maxcones. arXiv:math.RA/0604454 (2006)Google Scholar
  33. 33.
    Helbig, S.: On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups. Comment. Math. Univ. Carolin. 29(1), 157–167 (1988)MathSciNetMATHGoogle Scholar
  34. 34.
    Cohen, G., Gaubert, S., Quadrat, J.: Linear projectors in the max-plus algebra. In: Proceedings of the IEEE Mediterranean Conference, Cyprus, IEEE, Los Alamitos (1997)Google Scholar
  35. 35.
    Cohen, G., Gaubert, S., Quadrat, J.P.: Projection and aggregation in maxplus algebra. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds.): Current Trends in Nonlinear Systems and Control, in Honor of Petar Kokotovic and TuriNicosia. Systems & Control: Foundations & Applications. Birkhauser (2006)Google Scholar
  36. 36.
    Zaretski, K.: Regular elements in the semi group of binary relations. UspekiMat. Nauk 17(3), 105–108 (1962)Google Scholar
  37. 37.
    Kim, K.: Boolean Matrix Theory and Applications. Marcel Dekker, NewYork (1982)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stéphane Gaubert
    • 1
  • Ricardo Katz
    • 2
  1. 1.Domaine de VoluceauINRIALe ChesnayFrance
  2. 2.CONICET, Instituto de Matemática “Beppo Levi”Universidad Nacional de RosarioRosarioArgentina

Personalised recommendations