An Incremental Refining Spatial Join Algorithm for Estimating Query Results in GIS

  • Wan D. Bae
  • Shayma Alkobaisi
  • Scott T. Leutenegger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4080)


Geographic information systems (GIS) must support large georeferenced data sets. Due to the size of these data sets finding exact answers to spatial queries can be very time consuming. We present an incremental refining spatial join algorithm that can be used to report query result estimates while simultaneously provide incrementally refined confidence intervals for these estimates. Our approach allows for more interactive data exploration. While similar work has been done in relational databases, to the best of our knowledge this is the first work using this approach in GIS. We investigate different sampling methodologies and evaluate them through extensive experimental performance comparisons. Experiments on real and synthetic data show an order of magnitude response time improvement relative to the exact answer obtained when using the R-tree join.


Geographic Information System Geographic Information System Exact Answer Spatial Query Query Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hellerstein, J.M., Hass, P.J., Wang, H.J.: Online aggregation. In: Proc. ACM SIGMOD, pp. 171–182 (1997)Google Scholar
  2. 2.
    Hass, P.J.: Large-sample and deterministic confidence intervals for online aggregation. In: Proc. SSDM, pp. 51–63 (1997)Google Scholar
  3. 3.
    Hass, P.J., Hellerstein, J.M.: Ripple Joins for Online Aggregation. In: Proc. ACM SIGMOD, pp. 287–298 (1999)Google Scholar
  4. 4.
    Hellerstein, J.M., Avnur, R., Raman, V.: Informix under CONTROL: Online Query Processing. Data Mining and Knowledge Discovery 12, 281–314 (2000)CrossRefGoogle Scholar
  5. 5.
    Seshadri, S.: Probabilistic methods in Query Processing. Ph.D. Dissertation. University of Wisconsin (1992)Google Scholar
  6. 6.
    Olken, F.: Random Sampling from Databases. Ph.D. Dissertation. University of California, Berkeley (1993)Google Scholar
  7. 7.
    Rubinstein, R.Y.: Simulation and the Monte Carlo Method. John Wiley and Sons, Inc., Chichester (1981)MATHCrossRefGoogle Scholar
  8. 8.
    Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. In: Proc. ACM SIGMOD, pp. 45–57 (1984)Google Scholar
  9. 9.
    Brinkhoff, T., Kriegel, H., Seeger, B.: Efficient Processing of Spatial Joins Using R-trees. In: Proc. ACM SIGMOD, pp. 237–246 (1993)Google Scholar
  10. 10.
    Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and Optimization of Multiway Spatial Joins Using R-trees. In: Proc. ACM PODS, pp. 44–55 (1999)Google Scholar
  11. 11.
    An, N., Yang, Z., Sivasubramaniam, A.: Selectivity estimation for spatial joins. In: Proc. ICDE, pp. 368–375 (2001)Google Scholar
  12. 12.
    Medeiros, C.B., Pires, F.: Databases for GIS. ACM SIDMOD Record 23(1), 107–115 (1994)CrossRefGoogle Scholar
  13. 13.
    Larson, R.R.: Geographic Information Retrieval and Spatial Browsing. In: GIS and Libraries, University of Illinois, pp. 81–127 (1996)Google Scholar
  14. 14.
    Scheaffer, R.L., Mendenhall, W., Ott, R.L.: Elementary Survey Sampling, 5th edn. Duxbury Press, New York (1995)Google Scholar
  15. 15.
    Serfling, R.J.: Basic Statistics for Business and Economics, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  16. 16.
    USGS Mineral Resources On-Line Spatial Data (2001, 2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wan D. Bae
    • 1
  • Shayma Alkobaisi
    • 1
  • Scott T. Leutenegger
    • 1
  1. 1.Department of Computer ScienceUniversity of DenverDenverU.S.A.

Personalised recommendations