Advertisement

Interpolating and Using Most Likely Trajectories in Moving-Objects Databases

  • Byunggu Yu
  • Seon Ho Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4080)

Abstract

In recent years, many emerging database applications deal with large sets of continuously moving data objects. Since no computer system can commit continuously occurring infinitesimal changes to the database, related data management techniques view a moving object’s trajectory as a sequence of discretely reported spatiotemporal points. For each pair of consecutive committed trajectory points, a spatiotemporal uncertainty region representing all possible in-between trajectory points is defined. To support trajectory queries with a non-uniform probability distribution model, the query system needs to compute (interpolate) the “most likely” trajectories in the uncertainty regions to determine the peak points of the probability distributions. This paper proposes a generalized trajectory interpolation model using parametric trajectory representations. In addition, the paper expands and investigates three practical specializations of our proposed model using a moving object with momentum, i.e., a vehicle, as the exemplar.

Keywords

Query Point Sampling Ratio Uncertainty Region Trajectory Segment Degree Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzalini, Capitanio, A.: Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society B(61), 579–602 (1999)MathSciNetGoogle Scholar
  2. 2.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Imprecise Data. In: ACM SIGMOD, pp. 551–562 (2003)Google Scholar
  3. 3.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying Imprecise Data in Moving Object Environments. IEEE TKDE 16(9), 1112–1126 (2004)Google Scholar
  4. 4.
    Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Objects Representations. In: SSDBM, pp. 123–132 (1999)Google Scholar
  5. 5.
    Pfoser, D., Jensen, C.S.: Querying the Trajectories of On-Line Mobile Objects. In: ACM MobiDE, pp. 66–73 (2001)Google Scholar
  6. 6.
    Prager, S.D.: Environmental Contextualization of Uncertainty for Moving Objects. In: Geo-Computation, Ann Arbor, Michigan (2005)Google Scholar
  7. 7.
    Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004)Google Scholar
  8. 8.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Querying the Uncertain Position of Moving Objects. Temporal Databases, Research and Practice no 1399 (1998)Google Scholar
  9. 9.
    Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncertainty in moving objects databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, p. 233. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing Uncertainty in Moving Objects Databases. ACM Transactions on Database Systems 29(3), 463–507 (2004)CrossRefGoogle Scholar
  11. 11.
    Wolfson, O., Jiang, L., Sistla, A.P., Chamberlain, S., Rishe, N., Deng, M.: Databases for Tracking Mobile Units in Real Time. In: ICDT International Conference on Database Theory. LNCS, pp. 169–186. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and Querying Data-bases that Track Mobile Units. Distributed and Parallel Databases 7(3), 257–387 (1999)CrossRefGoogle Scholar
  13. 13.
    Yu, B., Kim, S.H., Bailey, T., Gamboa, R.: Curve-Based Representation of Moving Ob-ject Trajectories. In: IEEE International Database Engineering and Applications Symposium, pp. 419–425 (2004)Google Scholar
  14. 14.
    Yu, B., Prager, S.D., Bailey, T.: The Isosceles-Triangle Uncertainty Model: A Spatio-temporal Uncertainty Model for Continuously Changing Data. In: Gold, C. (ed.) Workshop on Dynamic & Multi-dimensional GIS, International Society for Photogrammetry and Remote Sensing, XXXVI:2/W29, ISPRS ICWG II/IV, Wales, UK, pp. 179–183 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Byunggu Yu
    • 1
  • Seon Ho Kim
    • 2
  1. 1.Computer Science DepartmentUniversity of WyomingLaramieUSA
  2. 2.Computer Science DepartmentUniversity of DenverDenverUSA

Personalised recommendations