A Framework for Merging, Repairing and Querying Inconsistent Databases

  • Luciano Caroprese
  • Ester Zumpano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4152)


This paper presents a framework for merging, repairing and querying inconsistent databases in the presence of functional dependencies and foreign key constraints and investigates the problem related to the satisfaction of general integrity constraints in the presence of null values. In more details, the approach consists in i) merging the source databases to reduce the set of tuples inconsistent with respect to the constraints defined by the primary keys, ii) repairing the integrated database with respect to functional dependencies and foreign key constraints, and iii) computing consistent answers over repaired database. This paper presents a system prototype, Rainbow, developed at the University of Calabria, implementing the proposed framework. The system receives in input an integration operator and a query and outputs the answer to the query. The system currently implements many of the integration operators proposed in the literature.


Integration Operator Functional Dependency Integrity Constraint Relation Employee Source Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1994)Google Scholar
  2. 2.
    Agarwal, S., Keller, A.M., Wiederhold, G., Saraswat, K.: Flexible Relation: an Approach for Integrating Data from Multiple, Possibly Inconsistent Databases. In: ICDE (1995)Google Scholar
  3. 3.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Databases. In: Proc. PODS 1999, pp. 68–79 (1999)Google Scholar
  4. 4.
    Baral, C., Kraus, S., Minker, J.: Combining Multiple Knowledge Bases. IEEE-TKDE 3(2), 208–220 (1991)Google Scholar
  5. 5.
    Bravo, L., Bertossi, L.: Semantically Correct Query Answers in the Presence of Null Values. In: Proc. EDBT WS on Inconsistency and Incompleteness in Databases (IIDB) (to appear, 2006)Google Scholar
  6. 6.
    Bry, F.: Query Answering in Information System with Integrity Constraints. In: IICIS, pp. 113–130 (1997)Google Scholar
  7. 7.
    Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data Integration under Integrity Constraints. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 262–279. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dung, P.M.: Integrating Data from Possibly Inconsistent Databases. In: COOPIS, pp. 58–65 (1996)Google Scholar
  9. 9.
    Grant, J., Subrahmanian, V.S.: Reasoning in Inconsistent Knowledge Bases. IEEE-TKDE 7(1), 177–189 (1995)MathSciNetGoogle Scholar
  10. 10.
    Greco, S., Zumpano, E.: Querying Inconsistent Databases. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 308–325. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Greco, G., Greco, S., Zumpano, E.: A Logic Programming Approach to the Integration, Repairing and Querying of Inconsistent Databases. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 348–364. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Greco, S., Pontieri, L., Zumpano, E.: Integrating and managing conflicting data. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 349–362. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Lin, J., Mendelzon, A.O.: Knowledge Base Merging by Majority. In: Pareschi, R., Fronhoefer, B. (eds.) Dynamic Worlds. Kluwer, Dordrecht (1999)Google Scholar
  14. 14.
    Lin, J.: A Semantics for Reasoning Consistently in the Presence of Inconsistency. AI 86(1), 75–95 (1996)Google Scholar
  15. 15.
    Lin, J.: Integration of Weighted Knowledge Bases. Artificial Intelligence 83(2), 363–378 (1996)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Subrahmanian, V.S.: Amalgamating Knowledge Bases. ACM-TODS 19(2), 291–331 (1994)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Yan, L.L., Ozsu, M.T.: Conflict Tolerant Queries in Aurora. Coopis, 279–290 (1999)Google Scholar
  18. 18.
    Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Science Pressingness, vol. 1 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luciano Caroprese
    • 1
  • Ester Zumpano
    • 1
  1. 1.DEISUniversità della CalabriaRendeItaly

Personalised recommendations