Computational Database Technology Applied to Option Pricing Via Finite Differences

  • Jöns Åkerlund
  • Krister Åhlander
  • Kjell Orsborn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4152)


Computational database technology spans the two research fields data-base technology and scientific computing. It involves development of database capabilities that support computational-intensive applications found in science and engineering. This includes support for representing and processing of mathematical models within the database environment without any significant performance loss compared to conventional implementations.

This paper describes how an existing database management system, AMOS II, is extended with capabilities to solve the Black–Scholes equation commonly used in option pricing. The numerical method used is finite differences, and a flexible database framework that can deal with complex mathematical objects and numerical methods is created. We describe how computational data representations and operations are adapted to the database management system and the approach is evaluated with respect to performance, extensibility, and ease of use.


Option Price Sparse Matrix Database Management System Computational Database Database Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Earth Simulator web site (June 2006),
  2. 2.
    Abiteboul, S., et al.: The Lowell database research self-assessment. Commun. ACM 48(5), 111–118 (2005)CrossRefGoogle Scholar
  3. 3.
    Åhlander, K.: An Object-Oriented Framework for PDE Solvers, PhD Thesis, Thesis No. 423, Uppsala University, Uppsala (1999)Google Scholar
  4. 4.
    Åkerlund, J.: A Computational Database for Black-Scholes Equation, MSc Thesis, Department of Information Technology, Uppsala University, Uppsala (June 2005)Google Scholar
  5. 5.
    The Amos II web site: (March 2006),
  6. 6.
    Bernstein, P., et al.: The Asilomar report on database research. SIGMOD Record 27(4), 74–80 (1998)CrossRefGoogle Scholar
  7. 7.
    Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, Oxford (1998)CrossRefGoogle Scholar
  8. 8.
    The Linpack web site at NetLib (June 2006),
  9. 9.
    The Lapack web site at NetLib (June 2006),
  10. 10.
    Brown, D., et al.: Overture: An object-oriented framework for solving partial differential equations on overlapping grids. In: Henderson, M.E., Anderson, C.R., Lyons, S.L. (eds.) Object-oriented Methods for Interoperable Scientific and Engineering Computing, SIAM, Philadelphia (1999)Google Scholar
  11. 11.
    Bruaset, A.M., Langtangen, H.P.: Object-oriented design of preconditioned iterative methods in Diffpack. ACM Transactions on Mathematical Software 23, 50–80 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Carey, M., Haas, L.: Extensible Database Management Systems. SIGMOD Record 19(4), 54–60 (1990)CrossRefGoogle Scholar
  13. 13.
    Conolly, T., Begg, C.: Database Systems - A Practical Approach to Design, Implementation and Management, 3rd edn. Addison-Wesley, Reading (2002)Google Scholar
  14. 14.
    Eijkhout, V.: LAPACK working note 50 - distributed sparse data structures for linear algebra operations (1992) (February 10, 2005), Available from:
  15. 15.
    Eggermont, R.: Sparse Matrix Compression Formats (February 10, 2005), Available from:
  16. 16.
    Garcia-Molina, H., Salem, K.: Main memory database systems: an overview. IEEE Transactions on Knowledge and Data Engineering 4(6), 509–516 (1992)CrossRefGoogle Scholar
  17. 17.
    Gray, J., Compton, M.: A call to arms. Queue 3(3), 30–38 (2005)CrossRefGoogle Scholar
  18. 18.
    Gray, J., et al.: Scientific data management in the coming decade. SIGMOD Record 34(4), 34–41 (2005)CrossRefGoogle Scholar
  19. 19.
    Gustafsson, B., et al.: Time Dependent Problems and Difference Methods. John Wiley & Sons, Inc., Chichester (1995)MATHGoogle Scholar
  20. 20.
    Heath, M.T.: Scientific Computing - An Introductory Survey, 2nd edn. McGraw-Hill, New York (2002)Google Scholar
  21. 21.
    Hull, J.C.: Options, Futures and other Derivatives, 4th edn. Prentice-Hall International, Inc., Englewood Cliffs (2000)Google Scholar
  22. 22.
    Löf, H.: Parallelizing the method of conjugate gradients for shared memory architectures, Uppsala University, Department of Information Technology, Uppsala (2004)Google Scholar
  23. 23.
    Nyström, M., Orsborn, K.: Computational Database Technology for Component Mode Synthesis. Advances in Engineering Software 35(10-11), 735–745 (2003)CrossRefGoogle Scholar
  24. 24.
    Orsborn, K.: On Extensible and Object-Relational Database Technology for Finite Element Analysis Applications. PhD Thesis, Thesis No. 452, Linköping University, Linköping (1996)Google Scholar
  25. 25.
    Orsborn, K., et al.: Representing matrices using multi-directional foreign functions. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The Functional Approach to Data Management: Modeling, Analyzing and Integrating Heterogeneous Data, Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Pantazopoulos, K.N., Houstos, E.N.: Modern software techniques in computational finance. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, Birkhäuser, pp. 227–246 (1997)Google Scholar
  27. 27.
    Risch, T., et al.: Functional data Integration in a distributed mediator system. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The Functional Approach to Data Management: Modeling, Analyzing and Integrating Heterogeneous Data. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. (2000), Available from:
  29. 29.
    Seltzer, M.: Beyond relational databases. Queue 3(3), 50–58 (2005)CrossRefGoogle Scholar
  30. 30.
    Silberschatz, A., Zdonik, S.: Strategic directions in database systems – breaking out of the box. ACM Computing Surveys 28(4), 764–778 (1996)CrossRefGoogle Scholar
  31. 31.
    Stonebraker, M., Brown, P.: Object-Relational DBMSs: Tracking the Next Great Wave. Morgan Kaufmann Publishers, Inc., San Francisco (1999)Google Scholar
  32. 32.
    Skavhaug, O.: Numerical Methods and Software with Applications in Computational Finance. PhD Thesis, Thesis No. 338, University of Oslo, Oslo (2004)Google Scholar
  33. 33.
    Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations, version 2 (1994) (February 10, 2005), Available from:
  34. 34.
    Tavella, D., Randall, C.: Pricing Financial Instruments - The Finite Difference Method. John Wiley & Sons, Inc., Chichester (2000)Google Scholar
  35. 35.
    Thuné, M., et al.: Object-oriented modeling of parallel PDE solvers. In: Boisvert, R.F., Tang, P.T.P. (eds.) The Architecture of Scientific Software, pp. 159–174. Kluwer Academic Publishers, Boston (2001)Google Scholar
  36. 36.
    Thuné, M., et al.: Object-oriented construction of parallel PDE solvers. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, Birkhäuser, pp. 203–226 (1997)Google Scholar
  37. 37.
    Wiederhold, G.: Information systems that really support decision-making. Journal of Intelligent Information Systems 14, 85–94 (2000)CrossRefGoogle Scholar
  38. 38.
    Willmott, P., Dewynne, J., Howison, S.: Option pricing - mathematical models and computation. Oxford Financial Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jöns Åkerlund
    • 1
  • Krister Åhlander
    • 1
  • Kjell Orsborn
    • 1
  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations