Relationship Design Using Spreadsheet Reasoning for Sets of Functional Dependencies

  • János Demetrovics
  • András Molnár
  • Bernhard Thalheim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4152)


Entity-Relationship and other common database modeling tools have restricted capabilities for designing a relationship of higher arity. Although a complete and unambiguous specification can be achieved by traditional functional dependencies for relational schemata, use of the traditional formal notation in practice is rare. We propose an alternative way: designing or surveying the properties of a non-binary relationship among object classes or attributes is considered by spreadsheet reasoning methods for functional dependencies. Another representation by the semilattice of closed attribute sets can also be used in parallel due to convenient conversion facilities.


Functional Dependency Functional Constraint Relationship Type Dimension Group Rule Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading (1995)MATHGoogle Scholar
  2. 2.
    Albrecht, M., Buchholz, E., Düsterhöft, A., Thalheim, B.: An informal and efficient approach for obtaining semantic constraints using sample data and natural language processing. In: Thalheim, B. (ed.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 1–28. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J.L. (ed.) Information Processing 74, Proceedings of IFIP Congress 74, Stockholm, pp. 580–583. North-Holland, Amsterdam (August 5–10, 1974)Google Scholar
  4. 4.
    Biskup, J.: Boyce-codd normal forma and object normal forms. Information Processing Letters 32(1), 29–33 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Biskup, J.: Foundations of information systems. Vieweg, Wiesbaden (1995) (in German)Google Scholar
  6. 6.
    Biskup, J., Demetrovics, J., Libkin, L.O., Muchnik, M.: On relational database schemes having a unique minimal key. J. of Information Processing 27, 217–225 (1991)MATHGoogle Scholar
  7. 7.
    Biskup, J., Polle, T.: Decomposition of database classes under path functional dependencies and onto contraints. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000. LNCS, vol. 1762, pp. 31–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Burosch, G., Demetrovics, J., Katona, G.O.H., Kleitman, D.J., Sapozhenko, A.A.: On the number of databases and closure operations. TCS 78(2), 377–381 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Camps, R.: From ternary relationship to relational tables: A case against common beliefs. ACM SIGMOD Record 31(2), 46–49 (2002)CrossRefGoogle Scholar
  10. 10.
    Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey. Discrete Applied Mathematics 127, 241–269 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen & Associates, Baton Rouge, LA. ER-designer reference manual (1986–1989)Google Scholar
  12. 12.
    Chen, P.P.: The entity-relationship model: Toward a unified view of data. ACM TODS 1(1), 9–36 (1976)CrossRefGoogle Scholar
  13. 13.
    Chen, P.P. (ed.): Proc. 1st Int. ER Conf., ER 1979: Entity-Relationship Approach to Systems Analysis and Design, Los Angeles, USA. North-Holland, Amsterdam (1979/1980)Google Scholar
  14. 14.
    Codd, E.F.: A relational model for large shared data banks. CACM 13(6), 197–204 (1970)Google Scholar
  15. 15.
    Demetrovics, J., Huy, N.X.: Translations of relation schemes and representations of closed sets. PU.M.A.Ser. A 1(3-4), 299–315 (1990)MATHMathSciNetGoogle Scholar
  16. 16.
    Demetrovics, J., Libkin, L.O., Muchnik, I.B.: Functional dependencies and the semilattice of closed classes. In: Demetrovics, J., Thalheim, B. (eds.) MFDBS 1989. LNCS, vol. 364, pp. 136–147. Springer, Heidelberg (1989)Google Scholar
  17. 17.
    Demetrovics, J., Molnar, A., Thalheim, B.: Graphical and spreadsheet reasoning for sets of functional dependencies. Technical Report 0404, Kiel University, Computer Science Institute (2004),
  18. 18.
    Demetrovics, J., Molnár, A., Thalheim, B.: Graphical reasoning for sets of functional dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 166–179. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Habib, N., Nourine, L.: The number of moore families on n=6. Discrete Mathematics 294(3), 291–296 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Higuchi, A.: Note: Lattices of closure operators. Discrete Mathematics 179, 267–272 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Thalheim, B.: Entity-relationship modeling – Foundations of database technology. Springer, Berlin (2000), See also:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • János Demetrovics
    • 1
  • András Molnár
    • 2
  • Bernhard Thalheim
    • 3
  1. 1.MTA SZTAKIComputer and Automation Institute, of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Information SystemsFaculty of Informatics, Eötvös Loránd University BudapestBudapestHungary
  3. 3.Computer Science and Applied Mathematics InstituteUniversity KielKielGermany

Personalised recommendations