Empathic Computing

  • Yang Cai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3864)


Empathic computing is an emergent paradigm that enables a system to understand human states and feelings and to share this intimate information. The new paradigm is made possible by the convergence of affordable sensors, embedded processors and wireless ad-hoc networks. The power law for multi-resolution channels and mobile-stationary sensor webs is introduced to resolve the information avalanche problems. As empathic computing is sensor-rich computing, particular models such as semantic differential expressions and inverse physics are discussed. A case study of a wearable sensor network for detection of a falling event is presented. It is found that the location of the wearable sensor is sensitive to the results. From the machine learning algorithm, the accuracy reaches up to 90% from 21 simulated trials. Empathic computing is not limited to healthcare. It can also be applied to solve other everyday-life problems such as management of emails and stress.


Sensor Network Wireless Sensor Network Field Programmable Gate Array Mobile Sensor Alarm Pheromone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E., Marzano, S.: The new everyday: views on Ambient Intelligence. 010 Publishers Rotterdam (2003)Google Scholar
  2. 2.
    Akgul, Y.S., et al.: Automatic Extraction and Tracking of the Tongue Contours. IEEE Trans. on Medical Imaging 18(10) (October 1999)Google Scholar
  3. 3.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey (2001)Google Scholar
  4. 4.
    Albowicz, Joe, Chen, Alvin, Zhang, Lixia: Recursive Position Estimation in Sensor Networks. UCLA Internet Research LaboratoryGoogle Scholar
  5. 5.
    Anderson, K., Qiu, Y., Whittaker, A.R.: Lucas, Margaret: Breath sounds, asthma, and the mobile phone. Lancet 358, 1343–1344 (2001)CrossRefGoogle Scholar
  6. 6.
    Backhaus, W., Kliegle, R., Werner, J. (eds.): Color Vision, Walter de Gruyter, Berlin, New York (1998)Google Scholar
  7. 7.
    Biship, C.M.: Neural Networks for Pattern Recognition. Oxford UP, Oxford (1995)Google Scholar
  8. 8.
  9. 9.
    Bossert, W.H.: Chemical communication among animals. Recent Progress in Hormone Research 19, 673–716 (1963)Google Scholar
  10. 10.
    Cai, Y., et al.: Ambient Diagnostics. In: Cai, Y. (ed.) Ambient Intelligence for Scientific Discovery. LNCS (LNAI), vol. 3345, pp. 224–247. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cai, Y., Milcent, G.: Video-On-Demand Network Throughput Control. In: Proceedings of Ambient Intelligence for Everyday Life, San Sebastian, Spain (July 2005)Google Scholar
  12. 12.
    Chan, M., Hariton, C., Ringeard, P., Campo, E.: Smart House Automation System for the Elderly and the Disabled. Systems, Man and Cybernetics. In: Intelligent Systems for the 21st Century’, IEEE International Conference (1995)Google Scholar
  13. 13.
  14. 14.
    Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)CrossRefGoogle Scholar
  15. 15.
    Chong, C.-Y., Kumar, S.P.: Sensor Networks: Evolution, Opportunity, an Challenges (2003)Google Scholar
  16. 16.
    Crossbow: MOTE-KIT 5x4x. Crossbow Technology Inc. (2005)Google Scholar
  17. 17.
    Dewsburry, Guy, Taylor, Bruce, Edge, Martin: Designing Safe Smart Home Systems for Vulnerable PeopleGoogle Scholar
  18. 18.
  19. 19.
    Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAuley, J.M., Dohm, J.M., Ip, F., Ferré, T.P.A., Rucker, D.F., Baker, V.R.: Environmental Studies with the Sensor Web: Principles and Practice. Sensors 5, 103–117 (2005)CrossRefGoogle Scholar
  20. 20.
    Farringdon, J., Nashold, S.: Continuous Body Monitoring. Ambient Intelligence for Scientific Discovery, 202–223 (2005)Google Scholar
  21. 21.
    Figueiredo, M., et al.: Expanding NASA’s Data Processing to Spacecraft, Computer (June 1999)Google Scholar
  22. 22.
    Galstyan, A.: Distributed online Localization in sensor networks using a moving target. University of Southern California (2004)Google Scholar
  23. 23.
    Gist, Y.J., Hetzel, L.I.: Department of Commerce: We are the People: Aging in the United States. N.p.: n.p. (2004)Google Scholar
  24. 24.
    Gunarathne, G.P.P., Gunarathne, T.R.: Arterial Blood-Volume Pulse Analyser. In: IEEE, Instrumentation and Measurement Technology Conference, May 2002, AK, USA, pp. 1249–1254 (2002)Google Scholar
  25. 25.
    Hayes, P.J., Ford, K.M.: Turing Test Considered Harmful. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, pp. 972–977 (1995)Google Scholar
  26. 26.
    Herzog, A., Lind, L.: Network Solutions for Home Health Care Applications. Linkoping University (2003)Google Scholar
  27. 27.
  28. 28.
  29. 29.
    Hu, Y., Lin, B., Cai, Y.: Determination of sea surface wind speed and temperature using TMI data: A General Regression Neural Network Approach. Remote Sensing of Environment (submitted)Google Scholar
  30. 30.
    Jang, J.H., Kim, J.E., Park, K.M., Park, S.O., Chang, Y.S., Kim, B.Y.: Development of the Digital Tongue Inspection System with Image Analysis. In: Proceedings of the Second Joint EMBS/BMES Conference, October 23-26, 2002, Houston, TX, USA (2002)Google Scholar
  31. 31.
    Kaiser, R.: Smart toilet a sure sign of future technology. Chicago Tribune. Saturday December 23 (2000) Google Scholar
  32. 32.
    Kaiser, W.J., Pottie, G.J.: Wireless Integrated Network Sensors. Communication of the ACM, 51–58 (May 2000)Google Scholar
  33. 33.
    Kohonen, T.: Self-organization and Associative Memory, 2nd edn. Springer, Berlin (1988)CrossRefMATHGoogle Scholar
  34. 34.
    Kohonen, Teuvo, Barna, Gyorgy, Chrisley, Ronald: Statistical Pattern Recognition with Neural Networks: Benchmarking Studies. Helsinki University of TechnologyGoogle Scholar
  35. 35.
    Lansing, F., Lemmerman, L., Walton, A., Bothwell, G., Bhasin, K., Prescott, G.: Needs for Communication and Onboard Processing in the Vision Era. In: 2002 IGARSS conference proceeding (2002)Google Scholar
  36. 36.
    Legg, G., ZigBee: Wireless Technology for Low-Power Sensor Networks. TachOnLine (May 6, 2004)Google Scholar
  37. 37.
    Lewin, M.E., Altman, S., (eds.): America’s Health Care Safety Net: Intact but Endangered, Institute of Medicine (2000)Google Scholar
  38. 38.
    Li, Q., De Michael, R., Rus, D.: Distributed Algorithms for Guiding Navigation across a Sensor Network. Dartmouth Department of Computer Science (2003)Google Scholar
  39. 39.
    Li, W.B.: Ergonomics for Interior and Furniture Design. China Forestry Press (2001)Google Scholar
  40. 40.
  41. 41.
    Mainwaring, Alan, Polastre, Joseph, Szewczyk, Robert, Culler, David, Anderson, John: Wireless Sensor Networks for Habitat Monitoring (2002)Google Scholar
  42. 42.
    McClintock, M.K.: Estrous synchrony: modulation of ovarian cycle length by female pheromones. Physiological Behavior 32, 701–705 (1984)CrossRefGoogle Scholar
  43. 43.
    McDermott, M.M., et al.: Functional Decline in Peripheral Arterial Disease: Associations With the Ankle Brachial Index and Leg Symptoms. JAMA 292, 453–461 (2004)CrossRefGoogle Scholar
  44. 44.
    McNabb, R.: The Paradox of Empathy, Philosophy Now, 52 (2005)Google Scholar
  45. 45.
    Meribout, M., Nakanishi, M., Ogura, T.: A parallel algorithm for real-time object recognition. Pattern Recognition 35(9) (September 2002)Google Scholar
  46. 46.
    Michell, T.: Machine Learning. The McGraw-Hill Companies, New York (1997)Google Scholar
  47. 47.
    Moore, G.: Cramming more components onto integrated circuits. Electronics 38(8) (April 19, 1965)Google Scholar
  48. 48.
    Ordonez, J.: The Web Chat That Saved Mom’s Life. Newsweek (November 28, 2005)Google Scholar
  49. 49.
    Pasterkamp, H., Kraman, S.S., Wodicka, G.R.: Respiratory sounds: advances beyond the stethoscope. American Journal of Respiratory Critical Care Medicine 156, 974–987 (1997)CrossRefGoogle Scholar
  50. 50.
    Pathirana, P.N.: Node Localization using mobile robots in delay-tolerant sensor networks (July 2005)Google Scholar
  51. 51.
    Perrig, P.R., Szewczyk, J.D., Wen, T.V., Culler, D.E.: SPINS: Security Protocols for Sensor Networks. Wireless Networks 8(5), 521–534 (2002)CrossRefMATHGoogle Scholar
  52. 52.
    Picton, P.: Neural Networks, 2nd edn. Palgrave, Basingstoke (2000)Google Scholar
  53. 53.
    Popple, A.V.: The Turing Test as a Scientific Experiment. Psychology, 7(15) (1996)Google Scholar
  54. 54.
    Rinberg, D., Davidowitz, H.: Do cockroaches ‘know’ about fluid dynamics? Nature 406(6794), 368 (2000)CrossRefGoogle Scholar
  55. 55.
    Rodgers, C.D.: Inverse Methods for Atmospheric Sounding. World Scientific, Singapore (2002)MATHGoogle Scholar
  56. 56.
    Schnorrenberger, C., Schnorrenberger, B.: Pocket Atlas of Tongue Diagnosis, Thieme, Stuttgart, New York (2005)Google Scholar
  57. 57.
  58. 58.
    Shah, R.C., Rabaey, J.M.: Energy Aware Routing for Low Energy Ad Hoc Sensor Networks. University of California Berkley (2002)Google Scholar
  59. 59.
    Silverstrim, J.E., Eric, H., Kent, W.C.: Method and Apparatus for Multi-Waveform Wireless Sensor Network. Patent WO2004US33051 (5-12-2005)Google Scholar
  60. 60.
    Sinha, Amit, Chandrakasan, Anantha: Dynamic Power Management in Wireless Sensor Networks. IEEE Design & Test of Computers, 62–74 (2001)Google Scholar
  61. 61.
    Smith, R.: Alarm signals in fishes. Rev. Fish. Biol. Fish. 2, 33–63 (1992)CrossRefGoogle Scholar
  62. 62.
    Spath, H.: Cluster analysis algorithms. Ellis Horwood Ltd., Chichester (1980)Google Scholar
  63. 63.
    Spiteri, M.A., Cook, D.G., Clarke, S.W.: Reliabilty of eliciting physical signs in examination of the chest. Lancet 2, 873–875 (1988)CrossRefGoogle Scholar
  64. 64.
    Starner, T.: Interview with Thad Starner, by Peter Thomas. New Scientist (1995),
  65. 65.
    Sung, M., Pentland, A.: MIThril LiveNet: Health and Lifestyle Networking. In: Workshop on Applications of Mobile Embedded Systems (WAMES 2004) at Mobisys 2004, June 2004, Boston, MA (2004)Google Scholar
  66. 66.
    Sung, M., Pentland, A.: Minimally-Invasive Physiological Sensing for Human-Aware Interfaces. In: HCI International 2005, HCII 2005 (2005)Google Scholar
  67. 67.
    Sung, M., Pentland, A.: Minimally-Invasive Physiological Sensing for Human-Aware Interfaces. In: HCI International 2005 (HCII 2005) (2005)Google Scholar
  68. 68.
    Sung, M., Marci, C., Pentland, A.: Wearable Infrastructure and Sensing for Real-time clinical Feedback Systems for Rehabilitation. Journal of NeuroEngineering and Rehabilitation (JNER 2005) (2005)Google Scholar
  69. 69.
    Tanz, O., Shaffer, J.: Wireless Local Area Network Positioning. In: Cai, Y. (ed.) Ambient Intelligence for Scientific Discovery. LNCS (LNAI), vol. 3345, pp. 248–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  70. 70.
    Taylor, C.: Simultaneous Localization, Calibration, and Tracking in an ad Hoc Sensor Network. MIT, Cambridge (2005)Google Scholar
  71. 71.
    Tessier, R., et al.: Reconfigurable Computing for digital signal processing: A survey. The Journal of VLSI Signal Processing 28(1-2) (May 2001)Google Scholar
  72. 72.
    Tredennick, N.: Get ready for reconfigurable computing. Computer Design, pp. 55–63 (1998)Google Scholar
  73. 73.
    Turing, A.M.: Computing Machinery and Intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Vann, L., Hu, Y.: A Neural Network Inversion System for Atmospheric Remote-Sensing Measurements. IEEE IMTC (2002)Google Scholar
  75. 75.
    Wang, J.J., Katz, R.B., Plants, W.C.: SRAM Based Re-Programmable FPGA for Space Applications. IEEE trans. on nuclear science 46(6), 1–1728 (1999)CrossRefGoogle Scholar
  76. 76.
    Wasserman, P.D.: Advanced methods in neural computing. Nostrand Reinhold, New York (1993)Google Scholar
  77. 77.
    Watsuji, T., Arita, S., Shinohara, S., Kitade, T.: Medical Application of Fuzzy Theory to the Diagnostic System of Tongue Inspection in Traditional Chinese Medicine. In: IEEE International Fuzzy Systems Conference Proceedings, pp. 145–148 (1999)Google Scholar
  78. 78.
    Watt, S.N.K.: Naive Psychology and the Inverted Turing Test. Psychology 7(14) (1996)Google Scholar
  79. 79.
    Weizenbaum, J.: Computer Power and Human Reason: From Judgment To Calculation. W.H. Freeman, San Francisco (1976)Google Scholar
  80. 80.
    Weizenbaum, J.: ELIZA - A Computer Program for the Study of Natural Language Communication between Man and Machine. Communications of the Association for Computing Machinery 9, 36–45 (1966)CrossRefGoogle Scholar
  81. 81.
    West, B.W., Flikkema, P.G., Sisk, T., Koch, G.W.: Wireless Sensor Networks for Dense Spatio-temporal Monitoring of the Environment: A Case for Integrated Circuit, System, and Network Design. Northern Arizona UniversityGoogle Scholar
  82. 82.
    White paper of The National Academy of Sciences. Exploring the digital divide: Charting the terrain of technology access and opportunityGoogle Scholar
  83. 83.
  84. 84.
    Williams, J.A., Dawood, A.S., Visser, S.J.: FPGA-Based Cloud Detection for Real-Time Onboard Remote Sensing. In: IEEE ICFPT 2002, Hong Kong (2002)Google Scholar
  85. 85.
    Winston, R. (editor-in-chief): Human. DK Publishing, Inc. (2004)Google Scholar
  86. 86.
    Wu, H., Siegel, M., Khosla, P.: Vehicle Sound Signature Recognition by Frequency Principle Component Analysis. In: The Proceedings of IMTC 1998 (1998); selected in the IEEE Transaction on Instrumentation and Measurement, October 1999, 48(5), 1005–1009 (1999) ISSN 0018-9456Google Scholar
  87. 87.
    Wu, H., Siegel, M., Stiefelhagen, R., Yang, J.: Sensor Fusion Using Dempster-Shafer Theory. In: The Proceedings of IMTC, May 21-23, Anchorage, AK, USA (2002)Google Scholar
  88. 88.
    Wyatt, T.D.: Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  89. 89.
    Xilinx Products (2003)Google Scholar
  90. 90.
    Xu, L., et al.: Segmentation of skin cancer images. Image and Vision Computing 17, 65–74 (1999)CrossRefGoogle Scholar
  91. 91.
    Yao, P.: Comparison of TCM Tongue Images with Gastroscopy Images, pp. 7–5331. Shangdong S&T Publisher (1996) (in Chinese) ISBN 7-5331-1849-9Google Scholar
  92. 92.
    Yu, Z.: Feed-Forward Neural Network (2005)Google Scholar
  93. 93.
    Zbibowski, R.: Fly like a fly. IEEE Spectrum (November 2005)Google Scholar
  94. 94.
    Zhang, E.: Diagnostics of Traditional Chinese Medicine. Publishing House of Shanghai University of Traditional Chinese Medicine (1990) (in both Chinese and English) ISBN 7-81010-125-0Google Scholar
  95. 95.
    Zhao, J., Govindan, R.: Understanding Packet Delivery Performanc. In: Dense Wireless Sensor Networks. University of Southern California Computer Science Department (2003)Google Scholar
  96. 96.
    Zhou, X.S., Rui, Y., Huang, T.S.: Exploration of Visual Data. Kluwer Academic Publishers, Dordrecht (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yang Cai
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations