Whistling to Machines

  • Urko Esnaola
  • Tim Smithers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3864)


The classical approach to improve human-machine interaction is to make machines seem more like us. One very common way of doing this is to try to make them able to use Human Natural Languages. The trouble is that current speech understanding techniques do not work well in uncontrolled and noisy environments, such as the ones we live and work in. Nor do these attempts mean that the machines use our languages in the way we do: they typically don’t speak much like we do, and we mostly have to speak to them in special unnatural ways for them to be able to understand. Rather than require people to adapt how they speak to machines, so that the machines can understand them, we present a simple artificial language, based upon musical notes, that can be learned and whistled easily by most people, and so used for simple communication with robots and other kinds of machines that we use in our everyday environments.


Ambient Noise Transition Group Main Building Note Detection Ambient Noise Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: How Do Human Process and Recognize Speech. IEEE Transactions on Speech and Audio Processing ASP 2, 567–577 (1994)CrossRefGoogle Scholar
  2. 2.
    Alonso, J.M.: TCP/IP. Programación the aplicaciones distribuidas. ra-ma (1998)Google Scholar
  3. 3.
    Alty, J.L.: Can we use music in computer-human communication. In: Proceedings of HCI 1995, pp. 409–423 (1995)Google Scholar
  4. 4.
    American Acoustic Society octave designation system: http://www.music.vt.edu/musicdictionary/texto/Octavedesignation.html
  5. 5.
    Blattner, M.M., Sumikawa, D.A., Greenberg, R.M.: Earcons and icons: Their structure and common design principlles. In: Human-Computer Interaction (1989)Google Scholar
  6. 6.
    Bohlen, M.: Universal Whistling Machine, http://www.realtechsupport.org/new_works/uwm.html, See also, Bohlen, M., Rinker, J.T.: Concurso Internacional sobre Arte y Vida Artificial, U.W.M (2004), http://www.fundacion.telefonica.com/at/vida/paginas/v7/whistling.html
  7. 7.
    Brigham, E.O.: The fast Fourier transform and its applications. Prentice-Hall, Inc., Englewood Cliffs (1988)Google Scholar
  8. 8.
    Brewster, S.A.: Providing a structured method for integrating non-speech audio into human-computer interfaces. PhD Thesis, University of York, UK (1994)Google Scholar
  9. 9.
    Brewster, S.A., Wright, P.C., Edwards, A.D.N.: An evaluation of earcons for use in auditory human-computer interfaces. In: Proceedings of InterCHI 1993 (Amsterdam), pp. 222–227. ACM Press, Addison-Wesley (1993)Google Scholar
  10. 10.
    Cutnell, J.D., Johnson, K.W.: Physics, 6th edn. Wiley, New York (2004)Google Scholar
  11. 11.
    Esnaola, U., Rañó, I., Smithers, T.: Robot MiReLa: Helping the Secretary to Attend Visitors. In: Proceedings of 2nd International Workshop on Advances in Service Robots (ASER 2004), May 20–21, 2004, Fekdafing, Lake Starnberg, Germany (2004)Google Scholar
  12. 12.
    Esnaola, U., Rañó, I., Smithers, T.: A Behaviour-Based Navigation System. In: Proceedings of TAROS 2004, September 2004, University of Essex, England (2004)Google Scholar
  13. 13.
    Esnaola, U., Smithers, T.: MiReLa: A Musical Robot. In: 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2005), Helsinki University of Technology, June 27–30, 2005, Espoo, Finland (accepted, 2005)Google Scholar
  14. 14.
    Gray, W.D.: VCR-as-paradigm: A study and taxonomy of errors in an interactive task. In: Nordby, K., Helmersen, P., Gilmore, D.J., Arnesen, S.A. (eds.) Human-Computer Interaction—Interact 1995, pp. 265–270. Chapman & Hall, New York (1995)Google Scholar
  15. 15.
    Gomera: see Whistled Speech. Wikipedia, http://wikimediafoundation.org/wiki/WhistledSpeech/
  16. 16.
    Husband, G.: What’s in your Music (1999), http://www.tnt-audio.com/topics/frequency_e.html
  17. 17.
    Karolyi, O.: Introducing Music. Penguin Books (1965)Google Scholar
  18. 18.
    Karu, Z.: Signals and systems. Made Ridiculously simple. ZiZi Press (1995)Google Scholar
  19. 19.
    Leplatre, G., Brewster, S.A.: Perspectives on the Design of Musical Auditory Interfaces. Focus conference on Anticipation, Cognition and Music. Liege, Belgium (August 1998); In: Dubois, D., (ed.) International Journal of Computing Anticipatory Systems (February 1999)Google Scholar
  20. 20.
    MICROPIK: PS6E8S, manual de instructiones. Profesor Blanco 18 Bajos, 46014-Valencia, Spain (2003)Google Scholar
  21. 21.
    Minsky, M.: The Society of Mind, Wiliam Heineman Ltd (1987)Google Scholar
  22. 22.
    NORCOMM: Model NC400 Touch-tone ani/alarm encoder instruction manual. 15385 Carrie Drive, Grass Valley, CA 95949 (2004)Google Scholar
  23. 23.
    Pierce, J.R.: The Science of Musical Sound. Scientific American Books. W. H. Freeman and Company, New York (1983)Google Scholar
  24. 24.
    Rañó, I.: Investigación de una arquitectura basada en el comportamiento para robots autónomos en entornos semi-estructurados, PhD Thesis, Facultad de Informática, Universidad del país Vasco (UPV) (2004)Google Scholar
  25. 25.
    Tristan, R.M.: Zapatero se compromete a duplicar la inversión en I+D+i para el año 2010. El Mundo (June 2005)Google Scholar
  26. 26.
    Smoloiar, W.: The role of music in multimediam. IEEE Multimedia, 9–11 (1994)Google Scholar
  27. 27.
    Vicker, P., Alty, J.L.: Siren Songs and Swan Songs, Debugging with Music. Communications of the ACM 46(7), 87–92 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Urko Esnaola
    • 1
  • Tim Smithers
    • 1
  1. 1.Project MiReLaDonostia – San SebastiánSpain

Personalised recommendations