Immune System Modeling: The OO Way

  • Hugues Bersini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4163)


This paper motivates the use of Object Oriented technologies such as OO programming languages, UML and Design Patterns in order to facilitate the development and the communication of immune system software modeling. The introduction justifies the need for immune computer models at different levels of abstraction and for various reasons: pedagogy, testing and study of emergent phenomena and quantitative predictions. Then the benefits allowed by adopting the OO way are further illustrated by simple examples of UML class, state and sequence diagrams and instances of Design Patterns such as the “Bridge” or the “State”, helping to question and to clarify the immune objects and relationships. Finally an elementary clonal selection model, restricted to B cells, antibodies and antigens, and fully developed in the OO spirit is presented.


Design Pattern Class Diagram Sequence Diagram Boolean Network Idiotypic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antia, R., Lipsitch, M.: Mathematical models of parasite responses to host immune defenses. Parasitology 115, 155–167 (1998)CrossRefGoogle Scholar
  2. 2.
    Bersini: Design Patterns for an OO Chemistry. In: Proceedings of the 1999 European Conference on Artificial Life. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Bersini, H.: Self-Assertion vs Self-Recognition: A Tribute to Francisco Varela. In: Proc. of the first ICARIS Conference, pp. 107–112 (2002)Google Scholar
  4. 4.
    Roger, B., Bruck, J.: Can Computers Help to Explain Biology? Nature 440(7083), 416 (2006)CrossRefGoogle Scholar
  5. 5.
    Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13, 56–62 (1992)CrossRefGoogle Scholar
  6. 6.
    Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: Stochastic stage-structured modelling of the adaptive immune system. In: Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 2003), pp. 124–131 (2003)Google Scholar
  7. 7.
    Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. Journal of Theor. Biol. 228, 227–240 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cohen, I. R., Tending Adam’s Garden: Evolving the Cognitive Immune Self. Academic Press, San Diego (2000) Google Scholar
  9. 9.
    Cohen, I.R.: T-cell vaccination for autoimmune disease: A panorama. Vaccine 20, 706–710 (2002)CrossRefGoogle Scholar
  10. 10.
    Cohn, M., Langman, R.E., Mata, J.J.: A computerized model for the self-non-self discrimination at the level of the Th (Th genesis). I. The origin of primer effector Th. cells. Int. Immunol. 14, 1105 (2002)Google Scholar
  11. 11.
  12. 12.
    De Boer, R.J., Perelson, A.S.: Size and Connectivity as Emergent Properties of a Developing Immune Network. Journal of Theor. Biology 149, 381–424 (1991)CrossRefGoogle Scholar
  13. 13.
    Efroni, S., Harel, D., Cohen, I.R.: Reactive animation: Realistic Modeling of Complex Dynamic Systems. Computer 38(1), 38–47 (2005)CrossRefGoogle Scholar
  14. 14.
    Efroni, S., Harel, D., Cohen, I.R.: A theory for complex systems: reactive animation. In: Patton, R., Namara, L.M. (eds.) Studies in Multidisciplinarity, vol. 3, pp. 309–324. Elsevier, Amsterdam (2006)Google Scholar
  15. 15.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation and machine learning. Physica D 22, 187–204 (1986)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Folwer, M.: UML Distilled, 3rd edn. Addison Wesley, Reading (2004)Google Scholar
  17. 17.
    Freeman, E., Freeman, E., Sierra, K., Bates, B.: Head First Design Patterns. O’Reilly Media, Sebastopol (2004)Google Scholar
  18. 18.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading (1995)Google Scholar
  19. 19.
    Holland, J.: What is to come and how to predict it. In: Brockman, J. (ed.) The Next Fifty Years: Science in the First Half of the Twenty-first Century – Vintage (2002)Google Scholar
  20. 20.
    Janeway, C., Travers, P., Walport, M.: M. Shlomchik: Immunobiology, 6th edn. Garland Science Publishing (2005)Google Scholar
  21. 21.
    Kleinstein, S.H., Seiden, P.E.: Computer simulations: simmulating the immune system. Comput. Sci. Eng. 2, 69–77 (2000)CrossRefGoogle Scholar
  22. 22.
    Kortes Altes, H., Ribeiro, R.M., De Boer, R.J.: The race between initial T-helper expansion and virus growth upon HIV infection influences polyclonality of the response and viral set-point. Proc. R. Soc. Lond. B 270, 1349–1358 (2003)CrossRefGoogle Scholar
  23. 23.
    Langman, R.E., Cohn, M.: A minimal model for the self-non-self distinction: a return to the basics. Semin. Immuno. 13, 189 (2000)CrossRefGoogle Scholar
  24. 24.
    Larman, C.: Applying UML and Patterns, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs (2003)Google Scholar
  25. 25.
    Nowak, M.A., May, R.M.: Virus dynamics: mathematical foundations of virology and immunology. Oxford University Press, Oxford (2000)Google Scholar
  26. 26.
    Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.: HIV-1 Dynamics in Vivo: Virion Clearance, Infected Cell Life-Span and Viral Generation Time. Science 271, 1582–1586 (1996)CrossRefGoogle Scholar
  27. 27.
    Perelson, A.S., Weisbuch, G.: Immunology for physicists - Rev. Mod. Phys. 69, 1219–1267 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hugues Bersini
    • 1
  1. 1.CODE/IRIDIAULBBruxellesBelgium

Personalised recommendations