A Multiversion-Based Multidimensional Model

  • Franck Ravat
  • Olivier Teste
  • Gilles Zurfluh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4081)


This paper addresses the problem of how to specify changes in multidimensional databases. These changes may be motivated by evolutions of user requirements as well as changes of operational sources. The multiversion-based multidimensional model we provide supports both data and structure changes. The approach consists in storing star versions according to relevant structure changes whereas data changes are recorded through dimension instances and fact instances in a star version. The model is able to integrate mapping functions to populate multiversion-based multidimensional databases.


Fact Version Data Warehouse Dimension Instance Dimension Version Star Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley & Sons, Inc., New York (1996)Google Scholar
  2. 2.
    Vaisman, A.A., Mendelzon, A.O.: A Temporal Query Language for OLAP: Implementation and a Case Study. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Body, M., Miquel, M., Bédard, Y., Tchounikine, A.: A multidimensional and multiversion structure for OLAP Applications. In: 5th International Workshop on Data Warehousing and OLAP - DOLAP 2002, November 2002, USA (2002)Google Scholar
  4. 4.
    Wrembel, R., Morzy, T.: Multiversion Data Warehouses: Challenges and Solutions. In: IEEE Conference on Computational Cybernetics - ICCC 2005, Mauritius (2005)Google Scholar
  5. 5.
    Blaska, M., Sapia, C., Hoflin, G.: On schema evolution in multidimensional databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data cubes under dimension updates. In: 15th International Conference on Data Engineering - ICDE 1999, Sydney, Australia, March 23-26, 1999, pp. 346–355 (1999)Google Scholar
  7. 7.
    Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting dimension updates in an OLAP Server. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Bebel, B., Eder, J., Koncilia, C., Morzy, T., Wrembel, R.: Creation and Management of Versions in Multiversion Data Warehouse. In: ACM Symposium on Applied Computing, Nicosia, Cyprus, March 14-17, 2004, pp. 717–723 (2004)Google Scholar
  9. 9.
    Bertino, E., Ferrari, E., Guerrini, G.: A formal temporal object-oriented data model. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 342–356. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Eder, J., Koncilia, C., Mitsche, D.: Automatic Detection of Structural Changes in Data Warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 119–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Eder, J., Koncilia, C.: Cahnges of Dimension Data in Temporal Data Warehouses. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Ravat, F., Teste, O., Zurfluh, G.: Towards the Data Warehouse Design. In: 8th Int. Conf. On Information Knowledge Managment- CIKM 1999, Kansas City, USA (1999)Google Scholar
  13. 13.
    Ravat, F., Teste, O., et Zurfluh, G.: Constraint-Based Multi-Dimensional Databases. In: Database Modeling for Industrial Data Management, ch. XI, pp. 323–368. IDEA Group, Zongmin MaGoogle Scholar
  14. 14.
    Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R schemes. In: 31st Hawaii International Conference on System Sciences (1998)Google Scholar
  15. 15.
    Morzy, T., Wrembel, R.: On Querying Versions of Multiversion Data Warehouse. In: 7th International Workshop on Data Warehousing and OLAP - DOLAP 2004, Washington, November 12-13 2004, pp. 92–101 (2004)Google Scholar
  16. 16.
    Simitsis, A., Vassiliadis, P., Terrovitis, M., Skiadopoulos, S.: Graph-Based Modeling of ETL Activities with Multi-level Transformations and Updates. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 43–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Franck Ravat
    • 1
  • Olivier Teste
    • 1
  • Gilles Zurfluh
    • 1
  1. 1.IRIT (UMR 5505)ToulouseFrance

Personalised recommendations