Discovering Semantic Sibling Associations from Web Documents with XTREEM-SP

  • Marko Brunzel
  • Myra Spiliopoulou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4081)


The semi-automatic extraction of semantics for ontology enhancement or semantic-based information retrieval encompasses several open challenges. There are many findings on the identification of vertical relations among concepts, but much less on indirect, horizontal relations among concepts that share a common, a priori unknown parent, such as Co-Hyponyms and Co-Meronyms. We propose the method XTREEM-SP (Xhtml TREE Mining for Sibling Pairs) for the discovery of such binary "sibling"-relations between concepts of a given vocabulary. While conventional methods process an appropriately prepared corpus, XTREEM-SP operates upon an arbitrarily heterogeneous Web Document Collection on a given topic and returns sibling relations between concepts associated to it. XTREEM-SP is independent of domain and language and does not rely on linguistic preprocessing nor on background knowledge beyond the ontology it is asked to enhance. We present our evaluation results with two gold standard ontologies and show that XTREEM-SP performs well, while being computationally inexpensive.


Sibling Pair Association Strength Association Measure Concept Pair Term Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHM00]
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: Proc. of the Workshop on Ontology Construction ECAI-2000 (2000)Google Scholar
  2. [B04]
    Buttler, D.: A short survey of document structure similarity algorithms. In: Proc. of the International Conference on Internet Computing (June 2004)Google Scholar
  3. [BCM05]
    Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications Series, vol. 123. IOS Press, Amsterdam (2005)Google Scholar
  4. [BS06a]
    Brunzel, M., Spiliopoulou, M.: Discovering Multi Terms and Co-Hyponymy from XHTML Documents with XTREEM. In: Nayak, R., Zaki, M.J. (eds.) KDXD 2006. LNCS, vol. 3915, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [BS06b]
    Brunzel, M., Spiliopoulou, M.: Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. [CMK06]
    Choi, I., Moon, B., Kim, H.-J.: A Clustering Method based on Path Similarities of XML Data. Data & Knowledge Engineering (February 2006)Google Scholar
  7. [CS04]
    Cimiano, P., Staab, S.: Learning by googling. SIGKDD Explorations 6(2), 24–34 (2004)CrossRefGoogle Scholar
  8. [CS05]
    Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided hierarchical clustering algorithm. In: Workshop on Learning and Extending Lexical Ontologies at ICML 2005, Bonn (2005)Google Scholar
  9. [DCWS04]
    Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: Clustering XML documents using structural summaries. In: Proc. of the EDBT Workshop on Clustering Information over the Web (ClustWeb 2004), Heraklion, Greece (2004)Google Scholar
  10. [E04]
    Evert, S.: The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD dissertation, University of Stuttgart (2004)Google Scholar
  11. [ECD04]
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-Scale Information Extraction in KnowItAll. In: Proc. of the 13th International WWW Conference, New York (2004)Google Scholar
  12. [FN99]
    Faure, D., Nedellec, C.: Knowledge Acquisition of Predicate Argument Structures from Technical Texts Using Machine Learning: The System ASIUM. In: Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 329–334. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [FS02]
    Faatz, A., Steinmetz, R.: Ontology Enrichment with Texts from the WWW. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, Springer, Heidelberg (2002)Google Scholar
  14. [H92]
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of the 14th International Conference on Computational Linguistics (1992)Google Scholar
  15. [HLQ01]
    Heyer, G., Läuter, M., Quasthoff, U., Wittig, T., Wolff, C.: Learning Relations using Collocations. In: Proc. IJCAI Workshop on Ontology Learning, Seattle, WA (2001)Google Scholar
  16. [K01a]
    Kruschwitz, U.: A Rapidly Acquired Domain Model Derived from Mark-Up Structure. In: Proc. of the ESSLLI 2001 Workshop on Semantic Knowledge Acquisition and Categorization, Helsinki (2001)Google Scholar
  17. [K01b]
    Kruschwitz, U.: Exploiting Structure for Intelligent Web Search. In: Proc. of the 34th Hawaii International Conference on System Sciences (HICSS), Maui Hawaii, IEEE, Los Alamitos (2001)Google Scholar
  18. [K99]
    Kashyap, V.: Design and creation of ontologies for environmental information retrieval. In: Proc. of the 12th Workshop on Knowledge Acquisition, Modeling and Management, Alberta, Canada (1999)Google Scholar
  19. [MS99]
    Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing, May 1999. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  20. [MS00]
    Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proc. of ECAI 2000 (2000)Google Scholar
  21. [P05]
    Pasca, M.: Finding Instance Names and Alternative Glosses on the Web: WordNet Reloaded. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. [ST04]
    Shinzato, K., Torisawa, K.: Acquiring hyponymy relations from Web Documents. In: Proc. of the 2004 Human Language Technology Conference (HLT-NAACL-04), Boston, Massachusetts (2004)Google Scholar
  23. [TG06]
    Tagarelli, A., Greco, S.: Toward Semantic XML Clustering. In: 6th SIAM International Conference on Data Mining (SDM 2006), April 20-22, 2006. Bethesda, Maryland, USA (2006)Google Scholar
  24. [ZLC03]
    Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity metric for XML documents. In: Proc. of the Workshop on Knowledge and Experience Management (October 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marko Brunzel
    • 1
  • Myra Spiliopoulou
    • 1
  1. 1.Otto-von-Guericke-University Magdeburg 

Personalised recommendations