Advertisement

Efficient Mining of Large Maximal Bicliques

  • Guimei Liu
  • Kelvin Sim
  • Jinyan Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4081)

Abstract

Many real world applications rely on the discovery of maximal biclique subgraphs (complete bipartite subgraphs). However, existing algorithms for enumerating maximal bicliques are not very efficient in practice. In this paper, we propose an efficient algorithm to mine large maximal biclique subgraphs from undirected graphs. Our algorithm uses a divide-and-conquer approach. It effectively uses the size constraints on both vertex sets to prune unpromising bicliques and to reduce the search space iteratively during the mining process. The time complexity of the proposed algorithm is O(nd Open image in new window N), where n is the number of vertices, d is the maximal degree of the vertices and N is the number of maximal bicliques. Our performance study shows that the proposed algorithm outperforms previous work significantly.

Keywords

Search Space Size Constraint Frequent Itemset Mining Adjacency List Closed Itemsets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proc of the 1993 ACM SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  2. 2.
    Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Applied Mathematics 145(1), 11–21 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bayardo, R.J., Goethals, B., Zaki, M.J. (eds.): Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations. CEUR Workshop Proceedings, vol. 126 (2004), CEUR-WS.org
  4. 4.
    Besson, J., Robardet, C., Boulicaut, J.-F.: Constraint-based mining of formal concepts in transactional data. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 615–624. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM 16(9), 575–577 (1973)MATHCrossRefGoogle Scholar
  6. 6.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein protein interaction network in budding yeast. Nucleic Acids Research 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  7. 7.
    Chung, F.: On the coverings of graphs. Discrete Applied Mathematics 30(2), 89–93 (1980)MATHCrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51(4) (1994)Google Scholar
  9. 9.
    Floris Geerts, B.G., Mielikáínen, T.: Tiling databases. In: Proc. of the 7th International Conference on Discovery Science, pp. 278–289 (2004)Google Scholar
  10. 10.
    Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  11. 11.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. In: Proceeding of the 8th international conference on World Wide Web, pp. 1481–1493 (1999)Google Scholar
  12. 12.
    Li, J., Li, H., Soh, D., Wong, L.: A Correspondence Between Maximal Complete Bipartite Subgraphs and Closed Patterns. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 146–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, G., Lu, H., Lou, W., Yu, J.X.: On computing, storing and querying frequent patterns. In: Proc. of the 9th ACM SIGKDD Conference, pp. 607–612 (2003)Google Scholar
  14. 14.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Proc. of the 9th Scandinavian Workshop on Algorithm Theory, pp. 260–272 (2004)Google Scholar
  15. 15.
    Mishra, N., Ron, D., Swaminathan, R.: A new conceptual clustering framework. Machine Learning 56(1-3) (2004)Google Scholar
  16. 16.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Peeters, R.: The maximum edge biclique problem is np-complete. Research Memorandum 789, Tilburg University, Faculty of Economics and Business Administration (2000)Google Scholar
  18. 18.
    Sanderson, M.J., Driskell, A.C., Ree, R.H., Eulenstein, O., Langley, S.: Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Molecular Biology and Evolution 20(7), 1036–1042 (2003)CrossRefGoogle Scholar
  19. 19.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 161–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: Proc. of the ICDM 2004 Workshop on Frequent Itemset Mining Implementations (2004)Google Scholar
  21. 21.
    Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proc. of the ACM SIGKDD Open Source Data Mining Workshop on Frequent Pattern Mining Implementations (2005)Google Scholar
  22. 22.
    Wang, J., Pei, J., Han, J.: Closet+: Searching for the best strategies for mining frequent closed itemsets. In: Proc. of the 9th ACM SIGKDD Conference, pp. 236–245 (2003)Google Scholar
  23. 23.
    Zaki, M.J., Hsiao, C.-J.: Charm: An efficient algorithm for closed itemset mining. In: Proc. of SIAM International Conference on Data Mining, pp. 398–416 (2002)Google Scholar
  24. 24.
    Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proc. of the 3rd SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guimei Liu
    • 1
  • Kelvin Sim
    • 1
  • Jinyan Li
    • 1
  1. 1.Institute for Infocomm ResearchSingapore

Personalised recommendations