Efficient Mining of Dissociation Rules

  • Mikołaj Morzy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4081)


Association rule mining is one of the most popular data mining techniques. Significant work has been done to extend the basic association rule framework to allow for mining rules with negation. Negative association rules indicate the presence of negative correlation between items and can reveal valuable knowledge about examined dataset. Unfortunately, the sparsity of the input data significantly reduces practical usability of negative association rules, even if additional pruning of discovered rules is performed. In this paper we introduce the concept of dissociation rules. Dissociation rules present a significant simplification over sophisticated negative association rule framework, while keeping the set of returned patterns concise and actionable. A new formulation of the problem allows us to present an efficient algorithm for mining dissociation rules. Experiments conducted on synthetic datasets prove the effectiveness of the proposed solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)Google Scholar
  2. 2.
    Agrawal, R., Carey, M.J., Faloutsos, C., et al.: Quest: A project on database mining. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, May 24-27, 1994, p. 514. ACM Press, New York (1994)CrossRefGoogle Scholar
  3. 3.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: 1993 ACM SIGMOD, Washington, DC, May 26-28, 1993, pp. 207–216 (1993)Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994, Santiago de Chile, September 12-15, 1994, pp. 487–499 (1994)Google Scholar
  5. 5.
    Amir, A., Feldman, R., Kashi, R.: A new versatile method for association generation. In: Princ. of Data Mining and Knowledge Disc., pp. 221–231 (1997)Google Scholar
  6. 6.
    Antonie, M.-L., Zaiane, O.R.: Mining positive and negative association rules: An approach for confined rules. Technical Report TR04-07, Department of Computing Science, University of Alberta (2004)Google Scholar
  7. 7.
    Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 86–97. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Koh, Y.S., Rountree, N.: Finding sporadic rules using apriori-inverse. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kryszkiewicz, M., Cichoñ, K.: Support oriented discovery of generalized disjunction-free representation of frequent patterns with negation. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 672–682. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Liu, H., Lu, H., Feng, L., Hussain, F.: Efficient search of reliable exceptions. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 194–203. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: KDD 1998, New York, August 27-31, 1998, pp. 94–100. AAAI Press, Menlo Park (1998)Google Scholar
  12. 12.
    Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In: Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)Google Scholar
  13. 13.
    Savasere, A., Omiecinski, E., Navathe, S.B.: Mining for strong negative associations in a large database of customer transactions. In: ICDE 1998, Orlando, Florida, USA, February 23-27, 1998, pp. 494–502. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  14. 14.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems 22(3), 381–405 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikołaj Morzy
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland

Personalised recommendations