A Hierarchy-Driven Compression Technique for Advanced OLAP Visualization of Multidimensional Data Cubes

  • Alfredo Cuzzocrea
  • Domenico Saccà
  • Paolo Serafino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4081)


In this paper, we investigate the problem of visualizing multidimensional data cubes, and propose a novel technique for supporting advanced OLAP visualization of such data structures. Founding on very efficient data compression solutions for two-dimensional data domains, the proposed technique relies on the amenity of generating “semantics-aware” compressed representation of two-dimensional OLAP views extracted from multidimensional data cubes via the so-called OLAP dimension flattening process. A wide set of experimental results conducted on several kind of synthetic two-dimensional OLAP views clearly confirm the effectiveness and the efficiency of our technique, also in comparison with state-of-the-art proposals.


Range Query Data Cube Splitting Position OLAP Query Multidimensional Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    2D, 3D and High-dimensional Data and Information Visualization research group. University of Hannover (2005), available at
  2. 2.
    Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity Estimation in Spatial Databases. In: Proc. of ACM SIGMOD, pp. 13–24 (1999)Google Scholar
  3. 3.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In: Proc. of IEEE ICDE, pp. 232–243 (1997)Google Scholar
  4. 4.
    Buccafurri, F., Furfaro, F., Saccà, D., Sirangelo, C.: A Quad-Tree Based Multiresolution Approach for Two-Dimensional Summary Data. In: Proc. of IEEE SSDBM, pp. 127–140 (2003)Google Scholar
  5. 5.
    Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: A Multidimensional Workload-Aware Histogram. In: Proc. of ACM SIGMOD, pp. 211–222 (2001)Google Scholar
  6. 6.
    Cabibbo, L., Torlone, R.: From a Procedural to a Visual Query Language for OLAP. In: Proc. of IEEE SSDBM, pp. 74–83 (1998)Google Scholar
  7. 7.
    Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. ACM SIGMOD Record 26(1), 65–74 (1997)CrossRefGoogle Scholar
  8. 8.
    Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP to User-Analysts: An IT Mandate. E.F. Codd and Associates TR (1993)Google Scholar
  9. 9.
    Colliat, G.: OLAP, Relational, and Multidimensional Database Systems. SIGMOD Record 25(3), 64–69 (1996)CrossRefGoogle Scholar
  10. 10.
    Cuzzocrea, A.: Overcoming Limitations of Approximate Query Answering in OLAP. In: Proc. of IEEE IDEAS, pp. 200–209 (2005)Google Scholar
  11. 11.
    Cuzzocrea, A., Furfaro, F., Saccà, D.: Hand-OLAP: A System for Delivering OLAP Services on Handheld Devices. In: Proc. IEEE ISADS, pp. 80–87 (2003)Google Scholar
  12. 12.
    Gebhardt, M., Jarke, M., Jacobs, S.: A Toolkit for Negotiation Support Interfaces to Multi-Dimensional Data. In: Proc. of ACM SIGMOD, pp. 348–356 (1997)Google Scholar
  13. 13.
    Gibbons, P.B., Matias, Y.: New Sampling-Based Summary Statistics for Improving Approximate Query Answers. In: Proc. of ACM SIGMOD, pp. 331–342 (1998)Google Scholar
  14. 14.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)CrossRefGoogle Scholar
  15. 15.
    Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating Multi-Dimensional Aggregate Range Queries over Real Attributes. In: Proc. of ACM SIGMOD, pp. 463–474 (2000)Google Scholar
  16. 16.
    Hacid, M.-S., Sattler, U.: Modeling Multidimensional Databases: A Formal Object-Centered Approach. In: Proc. of ECIS (1997)Google Scholar
  17. 17.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)Google Scholar
  18. 18.
    Ho, C.-T., Agrawal, R., Megiddo, N., Srikant, R.: Range Queries in OLAP Data Cubes. In: Proc. of ACM SIGMOD, pp. 73–88 (1997)Google Scholar
  19. 19.
    Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons, Chichester (1996)Google Scholar
  20. 20.
    Inselberg, A.: Visualization and Knowledge Discovery for High Dimensional Data. In: Proc. of IEEE UIDIS, pp. 5–24 (2001)Google Scholar
  21. 21.
    Keim, D.A.: Visual Data Mining. Tutorial at VLDB (1997), available at
  22. 22.
    Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons, Chichester (1996)Google Scholar
  23. 23.
    Koudas, N., Muthukrishnan, S., Srivastava, D.: Optimal Histograms for Hierarchical Range Queries. In: Proc. of ACM PODS, pp. 196–204 (2000)Google Scholar
  24. 24.
    Lehner, W., Albrecht, J., Wedekind, H.: Normal Forms for Multivariate Databases. In: Proc. of IEEE SSDBM, pp. 63–72 (1998)Google Scholar
  25. 25.
    Lenz, H.-J., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In: Proc. of IEEE SSDBM, pp. 132–143 (1997)Google Scholar
  26. 26.
    Lenz, H.-J., Thalheim, B.: OLAP Databases and Aggregation Functions. In: Proc. of IEEE SSDBM, pp. 91–100 (2001)Google Scholar
  27. 27.
    Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: CPM: A Cube Presentation Model for OLAP. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 4–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: Advanced Visualization for OLAP. In: Proc. of ACM DOLAP, pp. 9–16 (2003)Google Scholar
  29. 29.
    Thanh Binh, N., Min Tjoa, A., Wagner, R.: An Object Oriented Multidimensional Data Model for OLAP. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 69–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Tsois, A., Karayannidis, N., Sellis, T.: MAC: Conceptual Data Modeling for OLAP. Proc. of DMDW (2001), available at
  31. 31.
    Vassiliadis, P.: Modeling Multidimensional Databases, Cubes and Cube Operations. In: Proc. of IEEE SSDBM, pp. 53–62 (1998)Google Scholar
  32. 32.
    Vitter, J.S., Wang, M., Iyer, B.: Data Cube Approximation and Histograms via Wavelets. In: Proc. of ACM CIKM, pp. 96–104 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alfredo Cuzzocrea
    • 1
  • Domenico Saccà
    • 1
    • 2
  • Paolo Serafino
    • 1
  1. 1.Department of ElectronicsComputer Science, and Systems University of CalabriaCosenzaItaly
  2. 2.Institute of High Performance Computing and NetworksItalian National Research CouncilCosenzaItaly

Personalised recommendations