Parallelising Matrix Operations on Clusters for an Optimal Control-Based Quantum Compiler

  • T. Gradl
  • A. Spörl
  • T. Huckle
  • S. J. Glaser
  • T. Schulte-Herbrüggen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


Quantum control plays a key role in quantum technology, e.g. for steering quantum hardware systems, spectrometers or superconducting solid-state devices. In terms of computation, quantum systems provide a unique potential for coherent parallelisation that may exponentially speed up algorithms as in Shor’s prime factorisation. Translating quantum software into a sequence of classical controls steering the quantum hardware, viz. the quantum compilation task, lends itself to be tackled by optimal control. It is computationally demanding since the classical resources needed grow exponentially with the size of the quantum system. Here we show concepts of parallelisation tailored to run on high-end computer clusters speeding up matrix multiplication, exponentials, and trace evaluations used in numerical quantum control. In systems of 10 spin qubits, the time gain is beyond a factor of 500 on a 128-cpu cluster as compared to standard techniques on a single cpu.


Quantum System Matrix Multiplication Quantum Algorithm Matrix Exponential Quantum Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dowling, J., Milburn, G.: Quantum technology: The second quantum revolution. Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theo. Phys. 21, 467–488 (1982)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Feynman, R.P.: Feynman Lectures on Computation. Perseus Books, Reading, MA (1996)Google Scholar
  4. 4.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)Google Scholar
  5. 5.
    Shor, P.W.: Algorithms for Quantum Computation. In: Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California, pp. 124–134. IEEE Computer Society Press, New York (1994)CrossRefGoogle Scholar
  6. 6.
    Shor, P.W.: Polynomial-Time Algorithms for Prime Factorisation and Discrete Logarithm on a Quantum Computer. SIAM J. Comput. 26, 1484–1509 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jozsa, R.: Quantum Algorithms and the Fourier Transform. Proc. R. Soc. A. 454, 323–337 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum Algorithms Revisited. Proc. R. Soc. A. 454, 339–354 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ettinger, M., Høyer, P., Knill, E.: The Quantum Query Complexity of the Hidden Subgroup Problem is Polynomial. Inf. Process. Lett. 91, 43–48 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Deutsch, D.: Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer. Proc. Royal Soc. London A 400, 97–117 (1985)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms. J. Magn. Reson. 172, 296–305 (2005)CrossRefGoogle Scholar
  12. 12.
    Schulte-Herbrüggen, T., Spörl, A.K., Khaneja, N., Glaser, S.J.: Optimal Control-Based Efficient Synthesis of Building Blocks of Quantum Algorithms: A Perspective from Network Complexity towards Time Complexity. Phys. Rev. A 72, 42331 (2005)CrossRefGoogle Scholar
  13. 13.
    Saito, A., Kioi, K., Akagi, Y., Hashizume, N., Ohta, K.: Actual Computational Time-Cost of the Quantum Fourier Transform in a Quantum Computer using Nuclear Spins. quant-ph/0001113 (2000)Google Scholar
  14. 14.
    Blais, A.: Quantum Network Optimisation. Phys. Rev. A 64, 22312 (2001)CrossRefGoogle Scholar
  15. 15.
    Spörl, A.K., Schulte-Herbrüggen, T., Glaser, S.J., Bergholm, V., Storcz, M.J., Ferber, J., Wilhelm, F.K.: Optimal Control of Coupled Josephson Qubits. quant-ph/0504202 (2005)Google Scholar
  16. 16.
    Brockett, R.W.: Dynamical systems that sort lists, diagonalise matrices, and solve linear programming problems. In: Proc. IEEE Decision Control, 1988, Austin, Texas, pp. 779–803 (1988) see also: Lin. Alg. Appl. 146, 79–91 (1991)Google Scholar
  17. 17.
    Helmke, U., Moore, J.B.: Optimisation and Dynamical Systems. Springer, Berlin (1994)Google Scholar
  18. 18.
    Glaser, S.J., Schulte-Herbrüggen, T., Sieveking, M., Schedletzky, O., Nielsen, N.C., Sørensen, O.W., Griesinger, C.: Unitary control in quantum ensembles: Maximising signal intensity in coherent spectroscopy. Science 280, 421–424 (1998)CrossRefGoogle Scholar
  19. 19.
    Schulte-Herbrüggen, T.: Aspects and Prospects of High-Resolution NMR. PhD Thesis, Diss-ETH 12752, Zürich (1998)Google Scholar
  20. 20.
    Helmke, U., Hüper, K., Moore, J.B., Schulte-Herbrüggen, T.: Gradient Flows Computing the C-Numerical Range with Applications in NMR Spectroscopy. J. Global Optim. 23, 283–308 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Butkovskiy, A.G., Samoilenko, Y.I.: Control of Quantum-Mechanical Processes and Systems. Kluwer Academic Publishers, Dordrecht (1990)MATHGoogle Scholar
  22. 22.
    Lawson, C.L., Hanson, R.J., Kincaid, D., Krogh, F.T.: Basic Linear Algebra Subprograms for FORTRAN usage. ACM Trans. Math. Soft. 5, 308–323 (1979)MATHCrossRefGoogle Scholar
  23. 23.
    Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An Extended Set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14, 1–17 (1988)MATHCrossRefGoogle Scholar
  24. 24.
    Dongarra, J.J., Croz, J.D., Hammarling, S.: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 16, 1–17 (1990)MATHCrossRefGoogle Scholar
  25. 25.
    Dongarra, J., Duff, I., Sørensen, D., van der Vorst, H.: Numerical Linear Algebra on High-Performance Computers. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  26. 26.
    Golub, G.H., van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1989)MATHGoogle Scholar
  27. 27.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)MATHGoogle Scholar
  28. 28.
    Ladner, R.E., Fischer, M.J.: Parallel Prefix Computation. J. ACM 27, 831–838 (1980)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Demmel, J., Heath, M., van der Vorst, H.: Parallel Numerical Linear Algebra. Acta Numerica 2, 111–198 (1993)CrossRefGoogle Scholar
  30. 30.
    Mathias, R.: The Instability of Parallel Prefix Matrix Multiplication. SIAM J. Sci. Comput. 16, 956–973 (1995)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of a Matrix. SIAM Rev. 20, 801–836 (1978)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev. 45, 3–49 (2003)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sørensen, D.: LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)MATHCrossRefGoogle Scholar
  34. 34.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walkerx, D., Whaley, R.C.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1997)CrossRefGoogle Scholar
  35. 35.
    Cantoni, A., Butler, P.: Eigenvalues and Eigenvectors of Symmetric Centrosymmetric Matrices. Lin. Alg. Appl. 13, 275–288 (1976)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Rivlin, T.J.: The Chebychev Polynomials. Wiley, New York (1974)Google Scholar
  37. 37.
    Veshtort, M., Griffin, R.: SPINEVOLUTION: A Powerful Tool for the Simulation of Solid and Liquid State NMR Spectra. J. Magn. Reson. 178, 248–282 (2006)CrossRefGoogle Scholar
  38. 38.
    Grote, M., Huckle, T.: Parallel Preconditioning with Sparse Approximate Inverses. SIAM J. Sci. Comput. 18, 838–853 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Gradl
    • 1
  • A. Spörl
    • 2
  • T. Huckle
    • 1
  • S. J. Glaser
    • 2
  • T. Schulte-Herbrüggen
    • 2
  1. 1.Department of Mathematics and Computer Science 
  2. 2.Department of ChemistryTechnical University MunichGarchingGermany

Personalised recommendations