A Software Framework for the Portable Parallelization of Particle-Mesh Simulations

  • I. F. Sbalzarini
  • J. H. Walther
  • B. Polasek
  • P. Chatelain
  • M. Bergdorf
  • S. E. Hieber
  • E. M. Kotsalis
  • P. Koumoutsakos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


We present a software framework for the transparent and portable parallelization of simulations using particle-mesh methods. Particles are used to transport physical properties and a mesh is required in order to reinitialize the distorted particle locations, ensuring the convergence of the method. Field quantities are computed on the particles using fast multipole methods or by discretizing and solving the governing equations on the mesh. This combination of meshes and particles presents a challenging set of parallelization issues. The present library addresses these issues for a wide range of applications, and it enables orders of magnitude increase in the number of computational elements employed in particle methods. We demonstrate the performance and scalability of the library on several problems, including the first-ever billion particle simulation of diffusion in real biological cell geometries.


Load Balance Smooth Particle Hydrodynamic Particle Method Software Framework Fast Multipole Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Degond, P., Mas-Gallic, S.: The weighted particle method for convection-diffusion equations. Part 1: The case of an isotropic viscosity. Math. Comput. 53(188), 485–507 (1989)MATHMathSciNetGoogle Scholar
  2. 2.
    Greengard, L., Rokhlin, V.: The rapid evaluation of potential fields in three dimensions. In: Wang, D. (ed.) ADG 1996. LNCS, vol. 1360, pp. 121–141. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Harlow, F.H.: Particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3, 319–343 (1964)Google Scholar
  4. 4.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation using Particles. Institute of Physics Publishing (1988)Google Scholar
  5. 5.
    Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM – a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys. 215(2), 566–588 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bergdorf, M., Cottet, G.H., Koumoutsakos, P.: Multilevel adaptive particle methods for convection-diffusion equations. Multiscale Model. Simul. 4(1), 328–357 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Moon, B., Saltz, J.: Adaptive runtime support for direct simulation Monte Carlo methods on distributed memory architectures. In: Proceedings of the IEEE Scalable High-Performance Computing Conference, pp. 176–183. IEEE, Los Alamitos (1994)CrossRefGoogle Scholar
  9. 9.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Anal. 3, 25–30 (1964)MathSciNetGoogle Scholar
  11. 11.
    Walther, J.H.: An influence matrix particle-particle particle-mesh algorithm with exact particle-particle correction. J. Comput. Phys. 184, 670–678 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Eldredge, J.D., Leonard, A., Colonius, T.: A general deterministic treatment of derivatives in particle methods. J. Comput. Phys. 180, 686–709 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)CrossRefGoogle Scholar
  14. 14.
    Walther, J.H., Koumoutsakos, P.: Three-dimensional particle methods for particle laden flows with two-way coupling. J. Comput. Phys. 167, 39–71 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Monaghan, J.J.: Extrapolating B splines for interpolation. J. Comput. Phys. 60, 253–262 (1985)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Alexiades, V., Amiez, G., Gremaud, P.A.: Super-time-stepping acceleration of explicit schemes for parabolic problems. Comm. Numer. Meth. Eng. 12(1), 31–42 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chaniotis, A.K., Poulikakos, D., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 182(1), 67–90 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Sbalzarini, I.F., Mezzacasa, A., Helenius, A., Koumoutsakos, P.: Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89(3), 1482–1492 (2005)CrossRefGoogle Scholar
  22. 22.
    Sbalzarini, I.F., Hayer, A., Helenius, A., Koumoutsakos, P.: Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys. J. 90(3), 878–885 (2006)CrossRefGoogle Scholar
  23. 23.
    Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P.: On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003)CrossRefGoogle Scholar
  24. 24.
    Springel, V., Yoshida, N., White, S.D.M.: GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron 6, 79–117 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • I. F. Sbalzarini
    • 1
  • J. H. Walther
    • 1
    • 2
  • B. Polasek
    • 1
  • P. Chatelain
    • 1
  • M. Bergdorf
    • 1
  • S. E. Hieber
    • 1
  • E. M. Kotsalis
    • 1
  • P. Koumoutsakos
    • 1
  1. 1.Institute of Computational ScienceETH ZürichSwitzerland
  2. 2.Mechanical EngineeringDTULyngbyDenmark

Personalised recommendations