Online Checkpointing for Parallel Adjoint Computation in PDEs: Application to Goal-Oriented Adaptivity and Flow Control

  • Vincent Heuveline
  • Andrea Walther
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


The computation of derivatives for the optimization of time-dependent flow problems is based on the integration of the adjoint differential equation. For this purpose, the knowledge of the complete forward solution is required. Similar information is needed for a posteriori error estimation with respect to a given functional. In the area of flow control, especially for three dimensional problems, it is usually impossible to store the full forward solution due to the lack of memory capacities. Additionally, adaptive time-stepping procedures are needed for efficient integration schemes in time. Therefore, standard optimal offline checkpointing strategies are usually not well-suited in that framework.

We present a new online procedure for determining the checkpoint distribution on the fly. Complexity estimates and consequences for storing and retrieving the checkpoints using parallel I/O are discussed. The resulting checkpointing approach is integrated in HiFlow, a multipurpose parallel finite-element package with a strong emphasis in computational fluid dynamic, reactive flows and related subjects. Using an adjoint-based error control for prototypical three dimensional flow problems, numerical experiments demonstrate the effectiveness of the proposed approach.


Posteriori Error Error Representation Posteriori Error Estimation Adjoint Problem Forward Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brenner, S.C., Scott, R.L.: The mathematical theory of finite element methods. Springer, Heidelberg (1994)MATHGoogle Scholar
  2. 2.
    Brezzi, F., Falk, R.: Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28(3), 581–590 (1991)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 4, 105–158 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems, I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems, II, IV, V. SIAM J. Numer. Anal. 32, 706–740 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Giles, M.B.: On adjoint equations for error analysis and optimal grid adaptation. In: Caughey, D.A., Hafez, M.M. (eds.) Frontiers of Computational Fluid Dynamics 1998, pp. 155–170. World Scientific, Singapore (1998)Google Scholar
  7. 7.
    Griewank, A., Walther, A.: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software 26, 19–45 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Gunzburger, M.D.: Perspectives in flow control and optimization. Advances in Design and Control 5. SIAM, Philadelphia (2003)MATHGoogle Scholar
  9. 9.
    Heuveline, V.: On higher-order mixed FEM for low Mach number flows: Application to a natural convection benchmark problem. Int. J. Num. Meth. Fluids 41(12), 1339–1356 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Heuveline, V., Walther, A.: Towards the economical computation of adjoints in PDEs using optimal online checkpointing (in preparation, 2006)Google Scholar
  11. 11.
    Hinze, M., Sternberg, J.: A-revolve: An adaptive memory- and run-time-reduced procedure for calculating adjoints; with an application to the instationary Navier-Stokes system. Opti. Meth. Softw. 20, 645–663 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hood, P., Taylor, C.: A numerical solution of the Navier-Stokes equations using the finite element techniques. Comp. and Fluids 1, 73–100 (1973)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Machiels, L., Patera, A.T., Peraire, J.: Output bound approximation for partial differential equations; application to the incompressible Navier-Stokes equations. In: Biringen, S. (ed.) Industrial and Environmental Applications of Direct and Large Eddy Numerical Simulation, Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Oden, J.T., Prudhomme, S.: On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176, 313–331 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Saad, Y.: Iterative methods for sparse linear systems. Computer Science/Numerical Methods. PWS Publishing Company (1996)Google Scholar
  16. 16.
    Schäfer, M., Turek, S.: Benchmark computations of laminar flow around cylinder. Notes on numerical fluid mechanics 52, 856–869 (1996)Google Scholar
  17. 17.
    Serban, R., Hindmarsh, A.C.: CVODES: An ODE solver with sensitivity analysis capabilities. UCRL-JP-20039, LLNL (2003)Google Scholar
  18. 18.
    Walther, A., Griewank, A.: Advantages of binomial checkpointing for memory-reduced adjoint calculations. In: Feistauer, M., et al. (eds.) Numerical mathematics and advanced applications, pp. 834–843. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Wesseling, P.: An introduction to multigrid methods. Wiley, Chichester (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vincent Heuveline
    • 1
  • Andrea Walther
    • 2
  1. 1.Institute for Applied MathematicsUniversität KarlsruheKarlsruheGermany
  2. 2.Institute of Scientific ComputingTechnische Universität DresdenDresdenGermany

Personalised recommendations