Advertisement

Parallel LOD Scheme for 3D Parabolic Problem with Nonlocal Boundary Condition

  • Raimondas Čiegis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)

Abstract

A parallel LOD algorithms for solving the 3D problem with nonlocal boundary condition is considered. The algorithm is implemented using the parallel array object tool ParSol, then a parallel algorithm follows semi-automatically from the serial one. Results of computational experiments are presented.

Keywords

Parallel Algorithm Parabolic Problem Tridiagonal Matrix Nonlocal Boundary Condition Tridiagonal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual. ANL-95/11 - Revision 2.3.0, Argonne National Laboratory (2005)Google Scholar
  2. 2.
    Cannon, J.R., Lin, Y., Matheson, A.L.: Locally explicit schemes for three–dimensional diffusion with non–local boundary specification. Appl. Anal. 50, 1–19 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Čiegis, R.: Economical difference schemes for the solution of a two dimensional parabolic problem with an integral condition. Differential Equations 41(7), 1025–1029 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Čiegis, R.: Numerical Schemes for 3D Parabolic Problem with Non–Local Boundary Condition. In: Proceedings of 17th IMACS World congress, Scientific Computation, Applied Mathematics and Simulation, Paris, France, T2-T-00-0365, June 11-15 (2005)Google Scholar
  5. 5.
    Čiegis, R.: Finite-Difference Schemes for Nonlinear Parabolic Problem with Nonlocal Boundary Conditions. In: Ahues, M., Constanda, C., Largillier, A. (eds.) Integral Methods in Science and Engineering: Analytic and Numerical Techniques, Birkhauser, Boston, pp. 47–52 (2004) ISBN 0-8176-3228-XGoogle Scholar
  6. 6.
    Čiegis, R., Jakušev, A., Krylovas, A., Suboč, O.: Parallel algorithms for solution of nonlinear diffusion problems in image smoothing. Math. Modelling and Analysis 10(2), 155–172 (2005)MATHGoogle Scholar
  7. 7.
    Čiegis, R., Štikonas, A., Štikonienė, O., Suboč., O.: Monotone finite-difference scheme for parabolical problem with nonlocal boundary conditions. Differential Equations 38(7), 1027–1037 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Čiegis, R., Štikonas, A., Štikonienė, O., Suboč., O.: Stationary problems with nonlocal boundary conditions. Mathematical Modelling and Analysis 6, 178–191 (2001)MATHMathSciNetGoogle Scholar
  9. 9.
    Dehghan, M.: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Applied Numer. Math. 52, 39–62 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dehghan, M.: Locally explicit schemes for three–dimensional diffusion with non–local boundary specification. Applied Mathematics and Computation 135, 399–412 (2002)Google Scholar
  11. 11.
    Ekolin, G.: Finite difference methods for a nonlocal boundary value problem for the heat equation. BIT 31(2), 245–255 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fairweather, G., Lopez-Marcos, J.C.: Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions. Adv. Comput. Math. 6, 243–262 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hockney, R.: Performance parameters and benchmarking on supercomputers. Parallel Computing 17, 1111–1130 (1991)CrossRefGoogle Scholar
  14. 14.
    Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to parallel computing: design and analysis of algorithms. Benjamin/Cummings, Redwood City (1994)Google Scholar
  15. 15.
    Langtangen, H.P., Tveito, A.: Advanced Topics in Computational Partial Differential Equations. Numerical Methods and Diffpack Programming. Springer, Berlin (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Noye, B.J., Dehghan, M.: New explicit finite difference schemes for two–dimensional diffusion subject specification of mass. Numer. Meth. for PDE 15, 521–534 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Samarskii, A.A.: The theory of difference schemes. Marcel Dekker, Inc., New York–Basel (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raimondas Čiegis
    • 1
  1. 1.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations