Advertisement

Distributed Approximation Allocation Resources Algorithm for Connecting Groups

  • Fabien Baille
  • Lelia Blin
  • Christian Laforest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)

Abstract

This paper presents a distributed algorithm to allocate resources (links of a network) for interconnecting machines (forming a group) spread in a network. This is what we call a connection structure for this group of machines. An important innovative feature of our construction method is that we prove (not just simulate on particular and restricted cases) the fact that this structure has good properties in terms of, simultaneously, induced distances (for latency considerations) and cost (for cost considerations). Hence, we propose a distributed multicriteria approximation algorithm.

Keywords

Short Path Approximation Algorithm Span Tree Approximation Ratio Steiner Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Irlande, A., König, J.C., Laforest, C.: Construction of low-cost and low-diameter steiner trees for multipoint groups. In: Flammini, M., Nardelli, G.P.E., Spirakis, P. (eds.) Procedings of Sirocco 2000, pp. 197–210. Carleton Scientific (2000)Google Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. Springer, Heidelberg (1999)MATHGoogle Scholar
  3. 3.
    Elkin, M., Peleg, D.: The hardness of approximating spanner problems. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 370–381. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Laforest, C.: Construction of efficient communication sub-structures: Non-approximability results and polynomial sub-cases. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 903–910. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path trees. Algorithmica (14), 305–321 (1995)Google Scholar
  6. 6.
    Laforest, C.: A good balance between weigth and distances for multipoint trees. In: 6th International Conference On Principles Of DIstributed Systems (OPODIS) (2002)Google Scholar
  7. 7.
    Elkin, M.: Distributed approximation: a survey. SIGACT News 35(4), 40–57 (2004)CrossRefGoogle Scholar
  8. 8.
    Wu, B., Chao, K., Tang, C.: Approximation algorithms for the shortest total path length spanning tree problem. Discrete applied mathematics (105), 239–273 (2000)Google Scholar
  9. 9.
    Imase, M., Waxman, B.: Dynamic steiner tree problem. SIAM Journal on Discrete Mathematics 4(3), 369–384 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabien Baille
    • 1
  • Lelia Blin
    • 2
  • Christian Laforest
    • 2
  1. 1.LIAFAUniv. Denis DiderotParis Cedex 05
  2. 2.Tour Evry II, IBISCUniv. d’EvryEVRYFrance

Personalised recommendations