A Practical Approach of Diffusion Load Balancing Algorithms

  • Emmanuel Jeannot
  • Flavien Vernier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


In this paper, a practical approach of diffusion load balancing algorithms and its implementation are studied. Three problems are investigated. The first one is the determination of the load balancing parameters without any global knowledge. The second problem consists in estimating the cost and the benefit of a load exchange. The last one studies the convergence detection of the load balancing algorithm. For this last point we give an algorithm based on simulated annealing to reduce the convergence towards a load repartition in steps that can be done with discrete loads. Several simulations close this paper and illustrate the impact of the various methods and algorithms introduced.


  1. 1.
    Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing 7, 279–301 (1989)CrossRefGoogle Scholar
  2. 2.
    Hosseini, S.H., Litow, B., Malkawi, M., McPherson, J., Vairavan, K.: Analysis of a graph coloring based distributed load balancing algorithm. Jour. of Para. and Dist. Comp. 10, 160–166 (1990)CrossRefGoogle Scholar
  3. 3.
    Litow, B., Hosseini, S.H., Vairavan, K., Wolffe, G.S.: Performance characteristics of a load balancing algorithm. Jour. of Para. and Dist. Comp. 31, 159–165 (1995)CrossRefGoogle Scholar
  4. 4.
    Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25, 289–313 (1998)MathSciNetGoogle Scholar
  5. 5.
    Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency: Practice and Experience 2(4), 289–313 (1990)CrossRefGoogle Scholar
  6. 6.
    Bahi, J.M., Gaber, J.: Load balancing on networks with dynamically changing topology. In: Europar 2001 conference, Manchester, UK. LNCS, pp. 175–182 (2001)Google Scholar
  7. 7.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs NJ (1989)zbMATHGoogle Scholar
  8. 8.
    Xu, C.Z., Lau, F.C.M.: Analysis of the generalized dimension exchange method for dynamic load balancing. Journal of Parallel and Distributed Computing 16(4), 385–393 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ghosh, B., Muthukrishnan, S., Schultz, M.H.: First and second order diffusive methods for rapid, coarse, distributed load balancing. In: Proc. of the 8th Annual ACM Sympo. on Para. Algo. and Archi., pp. 72–81. ACM Press, New York (1996)Google Scholar
  10. 10.
    Bahi, J.M., Couturier, R., Vernier, F.: Synchronous distributed load balancing on dynamic networks. Journal of Parallel and Distributed Computing 65(11), 1397–1405 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Elsässer, R., Monien, B., Schamberger, S.: Load balancing in dynamic networks. In: Proc. 7th Inter. Sympo. on Para. Archi., Algo. and Net (2004)Google Scholar
  12. 12.
    Vernier, F.: Algorithmique itérative pour l’équilibrage de charge dans les réseaux dynamiques. PhD thesis, Univ. de Franche-Comté (France) (2004)Google Scholar
  13. 13.
    Xu, C.Z., Monien, B., Lüling, R., Lau, F.C.M.: An analytical comparison of nearest neighbor algorithms for load balancing in parallel computers. In: Proc. of 9th Inter. Para. Proc. Sympo., pp. 472–479. IEEE CSP, Los Alamitos (1995)Google Scholar
  14. 14.
    Elssser, R., Monien, B., Schamberger, S.: Load balancing of indivisible unit size tokens in dynamic and heterogeneous networks. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, p. 640. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Bahi, J.M., Contassot-Vivier, S., Couturier, R., Vernier, F.: A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms. IEEE Trans. on Para. and Dist. Sys. 16(1), 4–13 (2005)CrossRefGoogle Scholar
  16. 16.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Transactions on Programming Languages and Systems 5(1), 66–77 (1983)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lavallee, I., Roucairol, G.: A fully distributed (minimal) spanning tree algorithm. Information Processing Letters 23(2), 55–62 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems. In: The 19th Annual ACM Conf. on Theo. of Comp., pp. 230–240. ACM Press, New York (1987)Google Scholar
  19. 19.
    Lavallee, I., Lavault, C.: Yet another distributed election and (minimum-weight) spanning tree algorithm. Rr-1024, INRIA - Rocquencourt (1989)Google Scholar
  20. 20.
    Casanova, H., Legrand, A., Marchal, L.: Scheduling Distributed Applications: the SimGrid Simulation Framework. In: Proc. of the 3rd IEEE Inter. Sympo. on Clust. Comp. and the Grid (CCGrid 2003), May 2003, IEEE CSP, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emmanuel Jeannot
    • 1
  • Flavien Vernier
    • 2
  1. 1.INRIA – LORIAVandoeuvre les NancyFrance
  2. 2.UHP Nancy-I – LORIAVandoeuvre les NancyFrance

Personalised recommendations