On the Placement of Reservations into Job Schedules

  • Thomas Röblitz
  • Krzysztof Rzadca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


We present a new method for determining placements of flexible reservation requests into a schedule. For each considered placement the what-if method inserts a placeholder into the schedule and simulates the processing of batch jobs currently known to the system. Each placement is evaluated wrt. well-known scheduling metrics. This information may be used by a Grid reservation service to choose the most likely successful placement of a reservation. According to the results of extensive simulations, the what-if method grants more reservations and improves the performance of local jobs compared to our previously used load method.


Time Slot Execution Plan Load Method Advance Reservation Average Completion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A Distributed Resource Management Architecture that Supports Advance Reservations and Co-Allocation. In: Proceedings of the International Workshop on Quality of Service, pp. 27–36. IEEE Press, Piscataway, NJ (1999)Google Scholar
  2. 2.
    Burchard, L.O., Heiss, H.U., Linnert, B., Schneider, J., Kao, O., Hovestadt, M., Heine, F., Keller, A.: The Virtual Resource Manager: Local Autonomy versus QoS Guarantees for Grid Applications. In: Future Generation Grids. CoreGrid, vol. 2, pp. 83–98 (2006)Google Scholar
  3. 3.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Service. RFC 2475 (Informational) (1998), Updated by RFC 3260Google Scholar
  4. 4.
    Dinda, P.A.: A Prediction-Based Real-Time Scheduling Advisor. In: IPDPS 2002: Proceedings of the 16th International Parallel and Distributed Processing Symposium, Washington, pp. 10–17. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  5. 5.
    Downey, A.B.: Using Queue Time Predictions for Processor Allocation. In: IPPS 1997: Proceedings of the Job Scheduling Strategies for Parallel Processing, pp. 35–57. Springer, London (1997)Google Scholar
  6. 6.
    Röblitz, T., Schintke, F., Reinefeld, A.: Resource Reservations with Fuzzy Requests. Concurrency and Computation: Practice and Experience (to appear)Google Scholar
  7. 7.
    Ernemann, C., Yahyapour, R.: Applying Economic Scheduling Methods to Grid Environments. In: Grid Resource Management - State of the Art and Future Trends, pp. 491–506. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  8. 8.
    Heine, F., Hovestadt, M., Kao, O., Streit, A.: On the Impact of Reservations from the Grid on Planning-Based Resource Management. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 155–162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Smith, W., Foster, I., Taylor, V.: Scheduling with Advanced Reservations. In: Proceedings of the 14th International Symposium on Parallel and Distributed Processing, Cancun, Mexico, Washington, pp. 127–132. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  10. 10.
    Lifka, D.A.: The ANL/IBM SP Scheduling System. In: IPPS 1995: Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, pp. 295–303. Springer, London (1995)Google Scholar
  11. 11.
    Jackson, D.B., Snell, Q., Clement, M.J.: Core Algorithms of the Maui Scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin, C., Mouni, G., Neyron, P., Richard, O.: A batch scheduler with high level components. In: Proceedings of the IEEE International Symposium on Cluster computing and Grid 2005 (CCGrid 2005), vol. 2, pp. 776–783 (2005)Google Scholar
  13. 13.
    Feitelson, D.G.: Parallel Workloads Archive (2006),
  14. 14.
    Chiang, S.H., Arpaci-Dusseau, A.C., Vernon, M.K.: The Impact of More Accurate Requested Runtimes on Production Job Scheduling Performance. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Röblitz
    • 1
    • 4
  • Krzysztof Rzadca
    • 2
    • 3
    • 4
  1. 1.Zuse Institute BerlinBerlin-DahlemGermany
  2. 2.Laboratoire ID-IMAGGrenobleFrance
  3. 3.Polish-Japanese Institute of Information TechnologyWarsawPoland
  4. 4.CoreGRID Institute on Resource Management and Scheduling 

Personalised recommendations