Advertisement

Using On-the-Fly Simulation for Estimating the Turnaround Time on Non-dedicated Clusters

  • Mauricio Hanzich
  • Josep L. Lérida
  • Matías Torchinsky
  • Francesc Giné
  • Porfidio Hernández
  • Emilio Luque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)

Abstract

The computation capacity of the workstations of an open laboratory in almost every university is enough to execute not only the local workload but some distributed computation. Unfortunately, the local workload introduces a big uncertainty into the predictability of the system, which hinders the applicability of the job scheduling strategies.

In this work, we introduce into our job scheduling system, termed CISNE, a simulator, which allows its scheduling decisions to be enhanced by estimating the future cluster state. This process of estimation is backed by analytic procedures which are also described in this study. Likewise, the simulation let us assure some limit to the turnaround time for the parallel user. This paper analyses the performance of the simulation process in relation to different scheduling policies. These results reveal that those policies that respect an FCFS order for the waiting jobs are more predictable than those that alter the job ordering, like Backfilling.

Keywords

Schedule Policy Cluster State Turnaround Time Parallel Application Local Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya, A., Setia, S.: Availability and utility of idle memory in workstation clusters. In: Proceedings of the ACM SIGM/PERF 1999, pp. 35–46 (1999)Google Scholar
  2. 2.
    Litzkow, M., Livny, M., Mutka, M.: Condor- a hunter of idle workstations. In: 8th Int’l Conference of Distributed Computing Systems (1988)Google Scholar
  3. 3.
    Hanzich, M., Giné, F., Hernández, P., Solsona, F., Luque, E.: Cisne: A new integral approach for scheduling parallel applications on non-dedicated clusters. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 220–230. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Giné, F., Solsona, F., Hernández, P., Luque, E.: Cooperating coscheduling in a non-dedicated cluster. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 212–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Sobalvarro, P., Pakin, S., Weihl, W., Chien, A.: Dynamic coscheduling on workstation clusters. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 231–256. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Hanzich, M., Giné, F., Hernández, P., Solsona, F., Luque, E.: Coscheduling and multiprogramming level in a non-dedicated cluster. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 327–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Lafreniere, B.J., Sodan, A.C.: Scopred—scalable user-directed performance prediction using complexity modeling and historical data. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 62–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Downey, A.B.: Predicting queue times on space-sharing parallel computers. In: IPPS 1997: Proceedings of the 11th International Symposium on Parallel Processing, Washington, pp. 209–218. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  10. 10.
    Smith, W., Wong, P.: Resource selection using execution and queue wait time predictions. NAS Technical Reports (2002)Google Scholar
  11. 11.
    Li, H., Groep, D., Templon, J., Wolters, L.: Predicting job start times on clusters. In: 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2004) (2004)Google Scholar
  12. 12.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Transaction on Parallel & Distributed Systems 12(6), 529–543 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mauricio Hanzich
    • 2
  • Josep L. Lérida
    • 1
  • Matías Torchinsky
    • 2
  • Francesc Giné
    • 1
  • Porfidio Hernández
    • 2
  • Emilio Luque
    • 2
  1. 1.Dept. Computer ScienceUniversity of LleidaSpain
  2. 2.Dept. Computer Architecture and Operating SystemsUniversity Autònoma of BarcelonaSpain

Personalised recommendations