PAM-SoC: A Toolchain for Predicting MPSoC Performance

  • Ana Lucia Varbanescu
  • Henk Sips
  • Arjan van Gemund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


In the past, research on Multiprocessor Systems-on-Chip (MPSoC) has focused mainly on increasing the available processing power on a chip, while less effort was put into specific system-level performance analysis, or into behavior prediction. This paper introduces PAM-SoC, a light-weight performance predictor for MPSoC system-level performance. Being based on Pamela, a static performance predictor for parallel applications, PAM-SoC can compute its prediction in seconds for cases when cycle-accurate simulation takes tens of minutes. The paper includes a set of PAM-SoC validation experiments, as well as two sets of experiments to show how PAM-SoC can be used for either application tuning or MPSoC platform tuning in early system design phases.


Parallel Application Design Space Exploration Memory Behavior Benchmark Application Programmable Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jerraya, A., Wolf, W.: Multiprocessor Systems-on-Chips. Morgan Kaufmann, San Francisco (2004)Google Scholar
  2. 2.
    Wolf, W.: The future of multiprocessor systems-on-chips. In: Proc. DAC 2004, pp. 681–685. ACM Press, New York (2004)Google Scholar
  3. 3.
    Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the Cell multiprocessor. IBM Journal of Research and Development 49(4/5) (2005)Google Scholar
  4. 4.
    Nijhuis, M., Bos, H., Bal, H.: Supporting reconfigurable parallel multimedia applications. In: EuroPAR 2006 (2006)Google Scholar
  5. 5.
    van Gemund, A.: Symbolic performance modeling of parallel systems. IEEE TPDS 14(2), 154–165 (2003)Google Scholar
  6. 6.
    van Gemund, A.: Performance Modeling of Parallel Systems. PhD thesis, Delft University of Technology (1996)Google Scholar
  7. 7.
    Gonzalez-Escribano, A.: Synchronization Architecture in Parallel Programming Models. PhD thesis, Dpto. Informatica, University of Valladolid (2003)Google Scholar
  8. 8.
    Gautama, H., van Gemund, A.: Static performance prediction of data-dependent programs. In: Proc. WOSP 2000, pp. 216–226. ACM, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Varbanescu, A.L.: PAM-SoC experiments and results. Technical Report PDS-2006-001, Delft University of Technology,
  10. 10.
    Stravers, P., Hoogerbrugge, J.: Homogeneous multiprocessing and the future of silicon design paradigms. In: Proc. VLSI-TSA 2001 (2001)Google Scholar
  11. 11.
    Borodin, D.: Optimisation of multimedia applications for the Philips Wasabi multiprocessor system. Master’s thesis, TU Delft (2005)Google Scholar
  12. 12.
    Adve, V.S.: Analyzing the behavior and performance of parallel programs. PhD thesis, Dept. of Computer Sciences, University of Wisconsin-Madison (1993)Google Scholar
  13. 13.
    Adve, V.S., Vernon, M.K.: A deterministic model for parallel program performance evaluation. Technical Report TR98-333 (1998)Google Scholar
  14. 14.
    Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.: A framework for performance modeling and prediction. In: Proc. Supercomputing 2002, pp. 1–17. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  15. 15.
    Mahadevan, S., Storgaard, M., Madsen, J., Virk, K.: ARTS: A system-level framework for modeling MPSoC components and analysis of their causality. In: Proc. MASCOTS 2005, pp. 480–483. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Pimentel, A.D.: The Artemis workbench for system-level performance evaluation of embedded systems. Int. Journal of Embedded Systems 1(7) (2005)Google Scholar
  17. 17.
    Gries, M.: Methods for evaluating and covering the design space during early design development. Technical Report UCB/ERL M03/32, Electronics Research Lab, University of California at Berkeley (2003)Google Scholar
  18. 18.
    Kienhuis, B.: Design Space Exploration of Stream-based Dataflow Architectures. PhD thesis, Delft University of Technology (1999)Google Scholar
  19. 19.
    Baghdadi, A., Zergainoh, N.E., Cesario, W.O., Jerraya, A.A.: Combining a performance estimation methodology with a hardware/software codesign flow supporting multiprocessor systems. IEEE TSE 28(9), 822–831 (2002)Google Scholar
  20. 20.
    Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., Zafalon, R.: Analyzing on-chip communication in a MPSoC environment. In: Proc. DATE 2004, p. 20752. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  21. 21.
    Pande, P.P., Grecu, C., Jones, M., Ivanov, A., Saleh, R.: Performance evaluation and design trade-offs for Network-on-Chip interconnect architectures. IEEE TC 54(8), 1025–1040 (2005)Google Scholar
  22. 22.
    Loghi, M., Poncino, M.: Exploring energy/performance tradeoffs in shared memory MPSoCs: Snoop-based cache coherence vs. software solutions. In: Proc. DATE 2005, pp. 508–513. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  23. 23.
    Richter, K., Jersak, M., Ernst, R.: A formal approach to MpSoC performance verification. IEEE Computer 36(4), 60–67 (2003)Google Scholar
  24. 24.
    Lazarescu, M., Bammi, J., Harcourt, E., Lavagno, L., Lajolo, M.: Compilation-based software performance estimation for system level design. In: Proc. IEEE HLDVT 2000 (2000)Google Scholar
  25. 25.
    Thiele, L., Wandeler, E.: Performance Analysis of Embedded Systems. In: The Embedded Systems Handbook, CRC Press, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ana Lucia Varbanescu
    • 1
  • Henk Sips
    • 1
  • Arjan van Gemund
    • 1
  1. 1.Department of Computer ScienceDelft University of TechnologyThe Netherlands

Personalised recommendations