A Grid Computing Based Virtual Laboratory for Environmental Simulations

  • I. Ascione
  • G. Giunta
  • P. Mariani
  • R. Montella
  • A. Riccio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)


The grid computing technology permits the coordinate, efficient and effective use of (geographically spread) computational and storage resources with the aim to achieve high performance throughputs for intensive CPU load applications.

In this paper we describe the development of a virtual laboratory for environmental applications. The software infrastructure, and the related interface, are developed for the straightforward use of shared and distributed observations, software, computing and storage resources. The user can design and execute his experiments building up and assembling data acquisition procedures, numerical models, and applications for the rendering of output data, with limited knowledge of grid computing, thereby focusing his attention to the application.

Our solution aims at the goal of developing black-box grid applications for earth observation, marine and environmental sciences.


Grid Computing Grid Application Ocean Circulation Model Virtual Laboratory Princeton Ocean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lin, S., Atlas, R., Yeh, K.: Global weather prediction and high-end computing at Nasa. Computing in Science & Engineering 6 (2004)Google Scholar
  2. 2.
    Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications 15, 200–222 (2001)CrossRefGoogle Scholar
  3. 3.
    The Globus Toolkit, The Globus Alliance, http://www.globus.org
  4. 4.
    Michalakes, J., Canfield, T., Nanjundiah, R., Hammond, S., Grell, G.: Parallel Implementation, Validation, and Performance of MM5. Parallel Supercomputing in Atmospheric Science. World Scientific, River Edge, NJ 07661 (1994)Google Scholar
  5. 5.
    Barone, G., D’Ambra, P., di Serafino, D., Giunta, G., Montella, R., Murli, A., Riccio, A.: An Operational Mesoscale Air Quality Model for the Campania Region. Annali Istituto Universitario Navale, 179–189 (2000)Google Scholar
  6. 6.
    Barone, G., D’Ambra, P., di Serafino, D., Giunta, G., Murli, A., Riccio, A.: Parallel software for air quality simulation in Naples area. J. Environ. Manag. & Health, 209–215 (2000)Google Scholar
  7. 7.
    Blumberg, A.F., Mellor, G.L.: A description of a three-dimensional coastal ocean circulation model. In: Heaps, N. (ed.) Three-Dimensional Coastal ocean Models, American Geophysical Union (1987)Google Scholar
  8. 8.
    Tolman., H.L.: A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr. 21, 782–797 (1991)CrossRefGoogle Scholar
  9. 9.
    Giunta, G., Montella, R., Mariani P., Riccio, A.: pPOM: A nested, scalable, parallel and Fortran 90 implementation of the Princeton Ocean Model. Environmental Modelling & Software (accepted)Google Scholar
  10. 10.
    Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W.: The Weather Research and Forecast Model: Software Architecture and Performance. In: 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, U.K, October 25-29 (2004)Google Scholar
  11. 11.
    CAMx Comprehensive Air Quality Model with eXtensions. Version 4.20. ENVIRON International Corporation (2005)Google Scholar
  12. 12.
    Booij, N., Holthuijsen, L.H., Ris, R.C.: The SWAN wave model for shallow water. In: Int. Conf. on Coastal Engineering, Orlando, USA, pp. 668–676 (1996)Google Scholar
  13. 13.
    Resource Specification Language (RSL), http://globus.org/toolkit/docs/4.0/execution/wsgram/
  14. 14.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The Condor Experience. Concurrency and Computation: Practice and Experience 17, 323–356 (2005)CrossRefGoogle Scholar
  15. 15.
    Streit, A., Erwin, D., Lippert, T., Mallmann, D., Menday, R., Rambadt, M., Riedel, M., Romberg, M., Schuller, B., Wieder, P.: UNICORE – from Project Results to Production GridsGoogle Scholar
  16. 16.
  17. 17.
    Mavilio, C., Montella, R.: A resource broking algorithm for grid computing applications, Technical Report, 2005/11, Dept. of Applied Sciences – University of Naples ParthenopeGoogle Scholar
  18. 18.
    National Centre for Environmental Prediction, http://www.ncep.noaa.gov
  19. 19.
    European Centre for Medium-Range Weather Forecasts, http://www.ecmwf.int
  20. 20.
    Giunta, G., Montella, R., Mariani, P., Riccio, A.: Modeling and computational issues for air/water quality problems: A grid computing approach. Il Nuovo Cimento 28 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • I. Ascione
    • 1
  • G. Giunta
    • 1
  • P. Mariani
    • 2
  • R. Montella
    • 1
  • A. Riccio
    • 1
  1. 1.Dept. of Applied Sciences at University of Naples “Parthenope”Italy
  2. 2.Dept. of Marine Ecology and AquacultureDanish Inst. for Fisheries ResearchDenmark

Personalised recommendations