Advertisement

A Preliminary Out-of-Core Extension of a Parallel Multifrontal Solver

  • Emmanuel Agullo
  • Abdou Guermouche
  • Jean-Yves L’Excellent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4128)

Abstract

The memory usage of sparse direct solvers can be the bottleneck to solve large-scale problems. This paper describes a first implementation of an out-of-core extension to a parallel multifrontal solver (MUMPS). We show that larger problems can be solved on limited-memory machines with reasonable performance, and we illustrate the behaviour of our parallel out-of-core factorization. Then we use simulations to discuss how our algorithms can be modified to solve much larger problems.

Keywords

Large Problem Memory Management Dynamic Schedule Active Memory Assembly Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The BCSLIB Mathematical/Statistical Library, http://www.boeing.com/phantom/bcslib/
  2. 2.
    Dobrian, F., Pothen, A.: Oblio: a sparse direct solver library for serial and parallel computations. Technical report, Old Dominion University (2000)Google Scholar
  3. 3.
    Toledo, S.: Taucs: A library of sparse linear solvers, version 2.2 (2003), Available online at http://www.tau.ac.il/~stoledo/taucs/
  4. 4.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23(1), 15–41 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rothberg, E., Schreiber, R.: Efficient methods for out-of-core sparse Cholesky factorization. SIAM Journal on Scientific Computing 21(1), 129–144 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Rotkin, V., Toledo, S.: The design and implementation of a new out-of-core sparse Cholesky factorization method. ACM Trans. Math. Softw. 30(1), 19–46 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cozette, O., Guermouche, A., Utard, G.: Adaptive paging for a multifrontal solver. In: Proceedings of the 18th annual international conference on Supercomputing, pp. 267–276. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Ashcraft, C., Grimes, R.G., Lewis, J.G., Peyton, B.W., Simon, H.D.: Progress in sparse matrix methods for large linear systems on vector computers. Int. Journal of Supercomputer Applications 1(4), 10–30 (1987)CrossRefGoogle Scholar
  9. 9.
    Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Transactions on Mathematical Software 9, 302–325 (1983)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Amestoy, P.R., Duff, I.S.: Memory management issues in sparse multifrontal methods on multiprocessors. Int. J. of Supercomputer Applics. 7, 64–82 (1993)CrossRefGoogle Scholar
  11. 11.
    Amestoy, P.R., Duff, I.S., Vömel, C.: Task scheduling in an asynchronous distributed memory multifrontal solver. SIAM Journal on Matrix Analysis and Applications 26(2), 544–565 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Computing (to appear, 2005)Google Scholar
  13. 13.
    Takhur, R., Gropp, W., Lusk, E.: On implementing mpi-io portably and with high performance. In: Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pp. 23–32. ACM Press, New York (1999)Google Scholar
  14. 14.
    Cormen, T.H., Davidson, E.R., Chatterjee, S.: Asynchronous buffered computation design and engineering framework generator (abcdefg). In: 19th International Parallel and Distributed Processing Symposium (IPDPS 2005) (2005)Google Scholar
  15. 15.
    Karypis, G., Kumar, V.: MeTiS – A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices – Version 4.0. University of Minnesota (1998)Google Scholar
  16. 16.
    Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing clusters. In: Proc. of the First Conference on File and Storage Technologies (2002)Google Scholar
  17. 17.
    Guermouche, A., L’Excellent, J.Y.: Constructing memory-minimizing schedules for multifrontal methods. ACM Transactions on Mathematical Software (to appear, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emmanuel Agullo
    • 1
  • Abdou Guermouche
    • 2
  • Jean-Yves L’Excellent
    • 3
  1. 1.LIP-ENS LyonFrance
  2. 2.LaBRIBordeauxFrance
  3. 3.INRIA and LIP-ENS LyonFrance

Personalised recommendations