Automotive Software: A Challenge and Opportunity for Model-Based Software Development

  • Gabor Karsai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4147)


Embedded software development for automotive applications is widely considered as a significant source of innovation and improvements in cars. However, software development processes do not address well the needs of large-scale distributed real-time systems, like the ones automobiles do (or soon will) contain. The paper introduces a vision for the model-based development of embedded software, which is based on the broad-spectrum modeling of the applications in the context of a larger system, formal (and computer-supported) analysis of models, and automatic synthesis of the application(s). The paper also describes some initial steps taken to build the infrastructure for supporting such a process in the form of modeling and model transformation tools. The paper concludes with a list of challenging research problems.


Model Transformation Embed System Graph Transformation Abstract Syntax Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sztipanovits, J., Karsai, G.: Model-Integrated Computing. In: Computer, pp. 110–112 (April 1997)Google Scholar
  2. 2.
    Ledeczi, et al., Composing Domain-Specific Design Environments. In: Computer, pp. 44–51 (November 2001)Google Scholar
  3. 3.
    Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-Integrated Development of Embedded Software. Proceedings of the IEEE 91(1), 145–164 (2003)CrossRefGoogle Scholar
  4. 4.
    Model-driven Architecture,
  5. 5.
    UML 2.0 information,
  6. 6.
  7. 7.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison-Wesley, Reading (1998)Google Scholar
  8. 8.
    Leue, S., Mehrmann, L., Rezai, M.: Synthesizing ROOM Models from Message Sequence Chart Specifications, Technical Report 98-06, Dept. of Electrical and Computer Engineering, University of Waterloo (April 1998)Google Scholar
  9. 9.
    Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifications. Int. J. Found. Comput. Sci. 13(1), 5–51 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Agrawal, A., Levendovszky, T., Sprinkle, J., Shi, F., Karsai, G.: Generative Programming via Graph Transformations in the Model-Driven Architecture. In: Workshop on Generative Techniques in the Context of Model Driven Architecture, OOPSLA, Seattle, WA, November 5 (2002)Google Scholar
  11. 11.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing Co. Pte. Ltd., Singapore (1997)CrossRefGoogle Scholar
  12. 12.
    Blostein, D., Schürr, A.: Computing with Graphs and Graph Rewriting, Technical Report AIB 97-8, Fachgruppe Informatik, RWTH Aachen, GermanyGoogle Scholar
  13. 13.
    Maggiolo-Schettini, A.: A Graph Rewriting Framework for Statecharts Semantics. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Bredenfeld, R.C.: Tool integration and construction using generated graphbased design representations. In: Proceedings of the 32nd ACM/IEEE conference on Design automation conference, San Francisco, CA, June 12-16, pp. 94–99 (1995)Google Scholar
  15. 15.
    Object Management Group, Object Constraint Language Specification, OMG Document formal/01-9-77 (September 2001)Google Scholar
  16. 16.
    Karsai, G.: Design Tool Integration: An Exercise in Semantic Interoperability. In: Proceedings of the IEEE Engineering of Computer Based Systems, Edinburgh, UK (March 2000)Google Scholar
  17. 17.
    Szemethy, T., Karsai, G.: Platform Modeling and Model Transformations for Analysis. Journal of Universal Computer Science 10(10), 1383–1406 (2004)Google Scholar
  18. 18.
    Personal communication with engineers of a major US automotive manufacturerGoogle Scholar
  19. 19.
    Assmann, U.: Aspect Weaving by Graph Rewriting. In: Czarnecki, K., Eisenecker, U.W. (eds.) GCSE 1999. LNCS, vol. 1799, pp. 24–36. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Gray, J., Karsai, G.: An Examination of DSLs for Concisely Representing Model Traversals and Transformations. In: 36th Annual Hawaii International Conference on System Sciences (HICSS 2003) - Track 9, January 06 - 09, p. 325a (2003)Google Scholar
  21. 21.
    Clark, T., Evans, A., Kent, S., Sammut, P.: The MMF Approach to Engineering Object- Oriented Design Languages. In: Workshop on Language Descriptions, Tools and Applications (LDTA 2001) (April 2001)Google Scholar
  22. 22.
    Duddy, K.: UML2 must enable a family of languages. CACM 45(11), 73–75 (2002)Google Scholar
  23. 23.
    Whittle, J., Saboo, J., Kwan, R.: From Scenarios to Code: An Air Traffic Control Case Study. Journal of Software and Systems Modeling 4(1), 71–93 (2005)CrossRefGoogle Scholar
  24. 24.
    Krüger, I.H., Mathew, R.: Component Synthesis from Service Specifications. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 255–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Koskinen, J., Mäkinen, E., Systä, T.: Implementing a Component-Based Tool for Interactive Synthesis of UML Statechart Diagrams, an extended version of the SPLST 2001 paper. Acta Cybernetica 15(4) (2002)Google Scholar
  26. 26.
    Dang, T.: Verification and Synthesis of Hybrid Systems, Ph.D. thesis, INPG (2000)Google Scholar
  27. 27.
    Mitchell: Application of Level Set Methods to Control and Reachability Problems in Continuous and Hybrid Systems, PhD Dissertation, Stanford University (2002)Google Scholar
  28. 28.
    Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular Specification of Hybrid Systems in CHARON. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 6. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Agrawal, A., Simon, G., Karsai, G.: Semantic Translation of Simulink/Stateflow models to Hybrid Automata using Graph Transformations. In: Proceedings of the Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2004). Electronic Notes in Theoretical Computer Science, vol. 109, pp. 43–56 (2004)Google Scholar
  30. 30.
    Bi, Y., Yang, S., Smith, R.: Distributed Real-Time Systems: Monitoring, Debugging, and Visualization. John Wiley & Sons, Inc., New York (1996)Google Scholar
  31. 31.
    Pretschner, A., Lotzbeyer, H., Philipps, J.: Model Based Testing in Evolutionary Software Development. In: 12th IWRSP, p. 0155 (2001)Google Scholar
  32. 32.
    Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools. John Wiley, Chichester (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gabor Karsai
    • 1
  1. 1.Institute for Software Integrated Systems Vanderbilt UniversityNashvilleUSA

Personalised recommendations