Randomized Self-stabilizing Algorithms for Wireless Sensor Networks

  • Volker Turau
  • Christoph Weyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4124)


Wireless sensor networks (WSNs) pose challenges not pre- sent in classical distributed systems: resource limitations, high failure rates, and ad hoc deployment. The lossy nature of wireless communication can lead to situations, where nodes lose synchrony and programs reach arbitrary states. Traditional approaches to fault tolerance like replication or global resets are not feasible. In this work, the concept of self-stabilization is applied to WSNs. The majority of self-stabilizing algorithms found in the literature is based on models not suitable for WSNs: shared memory model, central daemon scheduler, unique processor identifiers, and atomicity. This paper proposes problem-independent transformations for algorithms that stabilize under the central daemon scheduler such that they meet the demands of a WSN. The transformed algorithms use randomization and are probabilistically self-stabilizing. This work allows to utilize many known self-stabilizing algorithms in WSNs. The proposed transformations are evaluated using simulations and a real WSN.


Sensor Node Wireless Sensor Network Span Tree Transient Fault Unit Disc Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turau, V., Weyer, C., Witt, M.: Analysis of a Real Multi-hop Sensor Network Deployment: The Heathland Experiment. In: 3rd Int. Conf. on Networked Sensing Systems (INSS 2006), pp. 6–13 (2006)Google Scholar
  2. 2.
    Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)MATHCrossRefGoogle Scholar
  3. 3.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  4. 4.
    Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)CrossRefGoogle Scholar
  5. 5.
    Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In: Butelle, F. (ed.) OPODIS, pp. 55–70 (2000)Google Scholar
  6. 6.
    Karaata, M.: A self-stabilizing algorithm for finding articulation points. Theoretical and Mathematical Aspects of Computer Science 10(1), 33–46 (1999)MathSciNetGoogle Scholar
  7. 7.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A self-stabilizing distributed algorithm for minimal total domination in an arbitrary system graph. In: IPDPS, pp. 240–243. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  8. 8.
    Chaudhuri, P.: A self-stabilizing algorithm for minimum-depth search of graphs. Information Sciences 118(1-4), 241–249 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction on message-passing networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 194–208. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. Chicago Journal of Theoretical Computer Science 2002(1) (2002)Google Scholar
  11. 11.
    Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: 2nd Workshop on Self-Stabilizing Systems, pp. 7.1–7.15 (1995)Google Scholar
  12. 12.
    Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model programs for asynchronous parallel computing environments. Inf. Process. Lett. 66(6), 285–290 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Hedetniemi, S., Hedetniemi, S., Jacobs, D., Srimani, P.: Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. Comput. Math. Appl. 46(5–6), 805–811 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Römer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless sensor networks. In: Stojmenovic, I. (ed.) Handbook of Sensor Networks: Algorithms and Architectures, pp. 199–237. John Wiley & Sons, Chichester (2005)Google Scholar
  16. 16.
    ScatterWeb (2006),
  17. 17.
    Kulkarni, S.S., Arumugam, M.U.: Transformations for Write-All-with-Collision Model. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 184–197. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Herman, T., Tixeuil, S.: A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks. In: 3rd ACM Conf. on Embedded Networked Sensor Systems (2005)Google Scholar
  20. 20.
    Kakugawa, H., Mizuno, M., Nesterenko, M.: Development of self-stabilizing distributed algorithms using transformation: case studies. In: 3rd Workshop on Self-Stabilizing Systems, pp. 16–30 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Volker Turau
    • 1
  • Christoph Weyer
    • 1
  1. 1.Institute of TelematicsHamburg University of TechnologyHamburgGermany

Personalised recommendations