Optimizing Locality for Self-organizing Context-Based Systems

  • Mirko Knoll
  • Torben Weis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4124)


Running context-based systems with a fixed infrastructure involves substantial investments. There have been efforts to replace those systems with self-organizing ones. Therefore, recent systems use peer-to-peer (P2P) technology as a basis. Context-information is bound to a specific location and thus should be stored on a nearby node. Common P2P algorithms use one-dimensional ID spaces. However, locations have at least two coordinates, namely x and y. We use space-filling curves to map the two-dimensional area onto the one-dimensional ID space. In this paper we discuss the suitability of different space-filling curves for the average case and for stochastic scenarios.


Range Query Overlay Network Neighbor Query Hilbert Curve Stochastic Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Lehmann, O., Bauer, M., Becker, C., Nicklas, D.: From home to world - supporting context-aware applications through world models. In: PERCOM 2004: Proceedings of the Second IEEE International Conference on Pervasive Computing and Communications (PerCom 2004), Washington, DC, USA, p. 297. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  3. 3.
    Grossmann, M., Bauer, M., Hönle, N., Käppeler, U.P., Nicklas, D., Schwarz, T.: Efficiently Managing Context Information for Large-scale Scenarios. In: Proceedings of the 3rd IEEE Conference on Pervasive Computing and Communications (PerCom 2005). IEEE Computer Society, Los Alamitos (2005)Google Scholar
  4. 4.
    Dudkowski, D., Schwarz, T.: The neXus Homepage (2005), http://www.nexus.uni-stuttgart.de
  5. 5.
    Knoll, M., Weis, T.: A P2P-Framework for Context-based Information. In: 1st International Workshop on Requirements and Solutions for Pervasive Software Infrastructures (RSPSI) at Pervasive 2006, Dublin, Ireland (2006)Google Scholar
  6. 6.
  7. 7.
    Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Transactions of Image Processing 5(5) (1996)Google Scholar
  8. 8.
    Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-indexings. In: Fundamentals of Computation Theory, pp. 364–375 (1997)Google Scholar
  9. 9.
    Wierum, J.M.: Logarithmic path-length in space-filling curves. In: Wismath, S. (ed.) Proceedings of the 14th Canadian Conference on Computational Geometry, Lethbridge, pp. 22–26 (2002)Google Scholar
  10. 10.
    Sagan, H.: Space-Filling Curves. Springer, New York (1994)MATHGoogle Scholar
  11. 11.
    Nielsen, B.: Lindenmayer systemer (in Danish) (2006), http://www.246.dk/lsystems.html
  12. 12.
    Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Elemente-Verfahrens für große Probleme. Ph.D thesis, Technische Universität München, Munich, Germany (2004)Google Scholar
  13. 13.
    Peitgen, H.O., Saupe, D. (eds.): The Science of Fractal Images. Springer, New York (1988)MATHGoogle Scholar
  14. 14.
    Alfonseca, M., Ortega, A.: Representation of fractal curves by means of l systems. In: APL 1996: Proceedings of the conference on Designing the future, pp. 13–21. ACM Press, New York (1996)CrossRefGoogle Scholar
  15. 15.
    Abelson, H., di Sessa, A.: Turtle Geometry: The Computer as a Medium for Exploring Mathematics. The MIT Press, Cambridge (1981)MATHGoogle Scholar
  16. 16.
    Tipler, P.A., Mosca, G., Pelte, D.: Physik, 2nd edn. Spektrum Akademischer Verlag (in German) (2004)Google Scholar
  17. 17.
    Gutowski, M.W.: Smooth genetic algorithm. Journal of Physics A: Mathematical and General 27(23) (1994)Google Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6), 440–442 (1998)CrossRefGoogle Scholar
  19. 19.
    Watts, D.J.: Small Worlds. Princeton University Press, Princeton (1999)Google Scholar
  20. 20.
    Ratnasamy, S.P.: A Scaleable Content-Adressable Network. Ph.D thesis, University of California, Berkeley, CA, USA (2002)Google Scholar
  21. 21.
    Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An Architecture for Global-scale Persistent Storage. In: Proceedings of ACM ASPLOS. ACM, New York (2000)Google Scholar
  22. 22.
    Kubiatowicz, J.: The OceanStore Project (2005), http://oceanstore.cs.berkeley.edu/
  23. 23.
    Schmidt, C., Parashar, M.: Flexible information discovery in decentralized distributed systems. In: 12th IEEE International Symposium on High Performance Distributed Computing (HPDC-12 2003), p. 226. IEEE Computer Science, Los Alamitos (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mirko Knoll
    • 1
  • Torben Weis
    • 1
  1. 1.Context-based Systems GroupUniversität Stuttgart 

Personalised recommendations