Designing Haptic Feedback for Touch Display: Experimental Study of Perceived Intensity and Integration of Haptic and Audio

  • Ville Tikka
  • Pauli Laitinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4129)


We studied the subjectively perceived intensity of the haptic feedback and the effects of the integration of the audio and haptic feedback. The purpose of the study was to specify design principles for haptic feedback on a piezo actuator enhanced mobile touch display device. The results of the study showed that the best corresponding physical parameter to perceived feedback intensity was the acceleration of the haptic stimulus pulse. It was also noticed that the audio stimuli was biasing the perception of the haptic stimuli intensity. These results clarify the principles behind haptic feedback design and imply that the multisensory integration should be stressed when designing haptic interaction.


Stimulus Intensity Haptic Feedback Multisensory Integration Stimulus Pulse Haptic Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poupyrev, I., Maruyama, S.: Tactile Interfaces for Small Touch Screens. In: Proceedings of UIST 2003, pp. 217–220. ACM Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Fukumoto, M., Sugimura, T.: Active Click: Tactile Feedback for Touch Panels. In: CHI 2001, Extended Abstracts, pp. 121–122. ACM Press, New York (2001)CrossRefGoogle Scholar
  3. 3.
    MacLean, K.E.: Designing with Haptic Feedback. In: Proceedings of the 2000 IEEE International Conference of Robotics & Automation, pp. 783–788 (2000)Google Scholar
  4. 4.
    de Gelder, B., Bertelson, P.: Multisensory Integration, Perception and Ecological Validity. Trends in Cognitive Neurosciences 7(10), 460–467 (2003)CrossRefGoogle Scholar
  5. 5.
    Bertelson, P., de Gelder, B.: The Psychology of Multimodal Perception. In: Spence, C., Driver, J. (eds.) Crossmodal Space and Crossmodal Attention, pp. 141–177. Oxford University Press, New York (2004)Google Scholar
  6. 6.
    Pavani, F., Spence, C., Driver, J.: Visual Capture of Touch: Out-of-the-Body Experiences with Rubber Gloves. Psychological Science 11(5), 353–359 (2000)CrossRefGoogle Scholar
  7. 7.
    Caclin, A., Soto-Faraco, S., Kingstone, A., Spence, C.: Tactile Capture of Audition. Perception & Psychophysics 64(4), 616–630 (2002)CrossRefGoogle Scholar
  8. 8.
    Lederman, S., Klatzky, R.: Multisensory Texture Perception. In: Calvert, G., Spence, C., Stein, B. (eds.) The Handbook of Multisensory Processes, pp. 107–122. The MIT Press, Cambridge (2004)Google Scholar
  9. 9.
    Jousmäki, V., Hari, R.: Parchment-Skin Illusion: Sound Biased Touch. Current Biology 8(6), R190 (1998)CrossRefGoogle Scholar
  10. 10.
    Zampini, M., Guest, S., Spence, C.: The Role of Auditory Cues in Modulating the Perception of Electric Toothbrushes. Journal of Dental Research 82(11), 929–932 (2003)CrossRefGoogle Scholar
  11. 11.
    Bresciani, J.-P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., Kheddar, A.: Feeling What You Hear: Auditory Signals Can Modulate Tactile Tap Perception. Experimental Brain Research 162, 172–180 (2005)CrossRefGoogle Scholar
  12. 12.
    Lloyd, D., Merat, N., McGlone, F., Spence, C.: Crossmodal Links Between Audition and Touch in Covert Endogenous Spatial Attention. Perception & Psychophysics 65(6), 901–924 (2003)CrossRefGoogle Scholar
  13. 13.
    Driver, J., Spence, C.: Crossmodal Spatial Attention: Evidence from Human Performance. In: Spence, C., Driver, J. (eds.) Crossmodal Space and Crossmodal Attention, pp. 180–220. Oxford University Press, New York (2004)Google Scholar
  14. 14.
    Schürmann, M., Caetano, G., Jousmäki, V., Hari, R.: Hands Help Hearing: Facilitatory Audiotactile Interaction at Low Sound-Intensity Levels. Journal of Acoustical Society of America 115(2), 830–832 (2004)CrossRefGoogle Scholar
  15. 15.
    Tuovinen, J.: Piezoelectric User Interface, EP1449267 (2002)Google Scholar
  16. 16.
    Poupyrev, I., Maruyama, S., Rekimoto, J.: Ambient Touch: Designing Tactile Interfaces For Handheld Devices. In: Proceedings of the 15th annual ACM Symposium on User Interface Software and Technology, pp. 51–60 (2002)Google Scholar
  17. 17.
    DeVoe, D., Pisano, A.J.: Modeling and Optimal Design of Piezoelectric Cantilevermicroactuators. Microelectrical Systems 6(3), 266–270 (1997)CrossRefGoogle Scholar
  18. 18.
    Giurgiutiu, V., Chaudhry, Z., Rogers, C.A.: Stiffness Issues in the Design of ISA Displacement Amplification Devices: A Case Study of a Hydraulic Displacement Amplifier. In: Chopra, I. (ed.) Proceedings of SPIE, Smart Structures and Materials 1995: Smart Structures and Integrated Systems, vol. 2443, pp. 105–119 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ville Tikka
    • 1
  • Pauli Laitinen
    • 1
  1. 1.Nokia Research CenterNOKIA GROUP

Personalised recommendations