Approximate Shortest Path Queries on Weighted Polyhedral Surfaces

  • Lyudmil Aleksandrov
  • Hristo N. Djidjev
  • Hua Guo
  • Anil Maheshwari
  • Doron Nussbaum
  • Jörg-Rüdiger Sack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We consider the classical geometric problem of determining shortest paths between pairs of points lying on a weighted polyhedral surface P consisting of n triangular faces. We present query algorithms that compute approximate distances and/or approximate (weighted) shortest paths. Our algorithm takes as input an approximation parameter ε∈(0,1) and a query time parameter \(\mathfrak{q}\) and builds a data structure which is then used for answering ε-approximate distance queries in \(O(\mathfrak{q})\) time. This algorithm is source point independent and improves significantly on the best previous solution. For the case where one of the query points is fixed we build a data structure that can answer ε-approximate distance queries to any query point in P in \(O(\log\frac{1}{\varepsilon})\) time. This is an improvement upon the previously known solution for the Euclidean fixed source query problem. Our algorithm also generalizes the setting from previously studied unweighted polyhedral to weighted polyhedral surfaces of arbitrary genus. Our solutions are based on a novel graph separator algorithm introduced here which extends and generalizes previously known separator algorithms.


Short Path Query Point Steiner Point Approximate Distance Polyhedral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM J. Comput. 26(6), 1689–1713 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest paths on a convex polytope in three dimensions. J. ACM 44, 567–584 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs of bounded genus. SIAM J. Disc. Math. 9(1), 129–150 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aleksandrov, L., Djidjev, H., Guo, H., Maheshwari, A.: Partitioning planar graphs with costs and weights. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 98–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for weighted shortest path queries on polyhedral surfaces. In: Proc. 14th Euro CG Barcelona, pp. 19–21 (1998)Google Scholar
  6. 6.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM J. Comput. 35, 627–646 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proc. 6th ACM Symposium on Computational Geometry, pp. 360–369 (1990); also IJCGA 6, 127–144 (1996)Google Scholar
  9. 9.
    Chiang, Y.-J., Mitchell, J.S.B.: Two-point euclidean shortest path queries in the plane. In: Proc. 10th ACM-SODA, Philadelphia, USA, pp. 215–224 (1999)Google Scholar
  10. 10.
    Djidjev, H.N.: Linear algorithms for graph separation problems. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 643–645. Springer, Heidelberg (1988)Google Scholar
  11. 11.
    Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs. SIAM J. Comput. 16, 1004–1022 (1987)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5, 391–407 (1984)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Har-Peled, S.: Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions. DCG 21, 216–231 (1999)MathSciNetGoogle Scholar
  14. 14.
    Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. SIAM J. Comput. 28(4), 1182–1197 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lyudmil Aleksandrov
    • 1
  • Hristo N. Djidjev
    • 2
  • Hua Guo
    • 3
  • Anil Maheshwari
    • 3
  • Doron Nussbaum
    • 3
  • Jörg-Rüdiger Sack
    • 3
  1. 1.Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations