Hierarchical Unambiguity

  • Holger Spakowski
  • Rahul Tripathi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We develop techniques to investigate relativized hierarchical unambiguous computation. We apply our techniques to push forward some known constructs involving relativized unambiguity based complexity classes (UP and Promise- UP) to new constructs involving arbitrary levels of the relativized unambiguous polynomial hierarchy (UPH). Our techniques are developed on constraints imposed by hierarchical assembly of unambiguous nondeterministic polynomial-time Turing machines, and so our techniques differ substantially, in applicability and in nature, from standard techniques (such as the switching lemma [Hås87]), which are known to play roles in carrying out similar generalizations.

Aside from achieving these generalizations, we resolve a question posed by Cai, Hemachandra, and Vyskoč [CHV93] on an issue related to nonadaptive Turing access to UP and adaptive smart Turing access to Promise-UP.


Complexity Theory Relativize Separation Polynomial Hierarchy Oracle Access Relativize World 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACRW04]
    Aida, S., Crâsmaru, M., Regan, K., Watanabe, O.: Games with uniqueness properties. Theory of Computing Systems 37(1), 29–47 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. [AK02]
    Arvind, V., Kurur, P.: Graph isomorphism is in SPP. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, November 2002, pp. 743–750. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  3. [BC93]
    Bovet, D., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  4. [Bei89]
    Beigel, R.: On the relativized power of additional accepting paths. In: Proceedings of the 4th Structure in Complexity Theory Conference, pp. 216–224. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  5. [Bei91]
    Beigel, R.: Bounded queries to SAT and the boolean hierarchy. Theoretical Computer Science 84(2), 199–223 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. [Bei93]
    Beigel, R.: The polynomial method in circuit complexity. In: Proceedings of the 8th Structure in Complexity Theory Conference, San Diego, CA, USA, May 1993, pp. 82–95. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  7. [BGS75]
    Baker, T., Gill, J., Solovay, R.: Relativizations of the P=?NP Question. SIAM Journal on Computing 4(4), 431–442 (1975)MATHCrossRefMathSciNetGoogle Scholar
  8. [BI87]
    Blum, M., Impagliazzo, R.: Generic oracles and oracle classes. In: Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, October 1987, pp. 118–126 (1987)Google Scholar
  9. [BS79]
    Baker, T., Selman, A.: A second step toward the polynomial hierarchy. Theoretical Computer Science 8, 177–187 (1979)MATHCrossRefMathSciNetGoogle Scholar
  10. [BU98]
    Berg, C., Ulfberg, S.: A lower bound for perceptrons and an oracle separation of the PPPH hierarchy. Journal of Computer and System Sciences 56(3), 263–271 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. [CGRS04]
    Crâsmaru, M., Glaßer, C., Regan, K.W., Sengupta, S.: A protocol for serializing unique strategies. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 660–672. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. [CHV92]
    Cai, J., Hemachandra, L., Vyskoč, J.: Promise problems and access to unambiguous computation. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 162–171. Springer, Heidelberg (1992)Google Scholar
  13. [CHV93]
    Cai, J., Hemachandra, L., Vyskoč, J.: Promises and fault-tolerant database access. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory, pp. 101–146. Cambridge University Press, Cambridge (1993)Google Scholar
  14. [ESY84]
    Even, S., Selman, A., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Information and Control 61(2), 159–173 (1984)MATHCrossRefMathSciNetGoogle Scholar
  15. [FSS84]
    Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17, 13–27 (1984)MATHCrossRefMathSciNetGoogle Scholar
  16. [FY96]
    Fortnow, L., Yamakami, T.: Generic separations. Journal of Computer and System Sciences 52(1), 191–197 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. [Gol05]
    Goldreich, O.: On promise problems. Technical report TR05–018, Electronic Colloquium on Computational Complexity, ECCC (2005)Google Scholar
  18. [GS88]
    Grollmann, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–335 (1988)MATHCrossRefMathSciNetGoogle Scholar
  19. [GT05]
    Glaßer, C., Travers, S.: Machines that can output empty words. Technical report TR05–147, Electronic Colloquium on Computational Complexity, ECCC (2005)Google Scholar
  20. [Hås87]
    Håstad, J.: Computational Limitations of Small-Depth Circuits. MIT Press, Cambridge (1987)Google Scholar
  21. [HO02]
    Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer, Heidelberg (2002)MATHGoogle Scholar
  22. [Ko85]
    Ko, K.: On some natural complete operators. Theoretical Computer Science 37(1), 1–30 (1985)MATHCrossRefMathSciNetGoogle Scholar
  23. [Ko87]
    Ko, K.: On helping by robust oracle machines. Theoretical Computer Science 52, 15–36 (1987)MATHCrossRefMathSciNetGoogle Scholar
  24. [Ko89]
    Ko, K.: Relativized polynomial time hierarchies having exactly k levels. SIAM Journal on Computing 18(2), 392–408 (1989)MATHCrossRefMathSciNetGoogle Scholar
  25. [LR94]
    Lange, K.-J., Rossmanith, P.: Unambiguous polynomial hierarchies and exponential size. In: Proceedings of the 9th Structure in Complexity Theory Conference, pp. 106–115. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  26. [NR98]
    Niedermeier, R., Rossmanith, P.: Unambiguous computations and locally definable acceptance types. Theoretical Computer Science 194(1–2), 137–161 (1998)MATHCrossRefMathSciNetGoogle Scholar
  27. [OH93]
    Ogiwara, M., Hemachandra, L.: A complexity theory for feasible closure properties. Journal of Computer and System Sciences 46(3), 295–325 (1993)MATHCrossRefMathSciNetGoogle Scholar
  28. [Pap94]
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  29. [Reg97]
    Regan, K.: Polynomials and combinatorial definitions of languages. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 261–293. Springer, Heidelberg (1997)Google Scholar
  30. [Sip83]
    Sipser, M.: Borel sets and circuit complexity. In: Proceedings of the 15th ACM Symposium on Theory of Computing, pp. 61–69. ACM Press, New York (1983)Google Scholar
  31. [SL96]
    Sheu, M., Long, T.: UP and the low and high hierarchies: A relativized separation. Mathematical Systems Theory 29(5), 423–449 (1996)MATHMathSciNetGoogle Scholar
  32. [ST]
    Spakowski, H., Tripathi, R.: On the power of unambiguity in alternating machines. Theory of Computing Systems (to appear)Google Scholar
  33. [Wag90]
    Wagner, K.: Bounded query classes. SIAM Journal on Computing 19(5), 833–846 (1990)MATHCrossRefMathSciNetGoogle Scholar
  34. [Yao85]
    Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pp. 1–10 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Holger Spakowski
    • 1
  • Rahul Tripathi
    • 2
  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Department of Computer Science and EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations