On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared Random String Model

  • Giuseppe Persiano
  • Ivan Visconti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


In this paper we study the notion of a Double-Round NIZ- KPK in the SRS model. In a Double-Round NIZKPK prover and verifier have access to the same random string Σ and, in addition, the prover is allowed to send one message to the verifier before Σ is made available. The verifier needs not to reply to this message. The random string and initial prover message can then be used in any polynomial number of proofs each consisting of a single message.

We show how to construct Double-Round non-malleable NIZKPKs in the SRS model by only requiring the existence of one-way trapdoor permutations. In contrast, regular NIZKPKs require the existence of cryptosystems with an extra density property, called dense secure cryptosystems. We then show that Double-Round NIZKPKs can replace one-round NIZKPKs in the design of secure protocols. The replacement has no significant effect on the round complexity of the larger protocol but it removes the need of the existence of dense secure cryptosystems. We give examples of cryptographic constructions that use one-round NIZKPKs and that are improved when using Double-Round NIZKPKs: 1) the construction of 3-round resettable zero-knowledge arguments in the UPK model [EUROCRYPT 2001]; 2) the construction of a constant-round (n – 1)-secure simulatable coin-flipping protocol [EUROCRYPT 2003].


Proof System Random String Commitment Scheme Reference String Common Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barak, B.: Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared Random String Model. In: FOCS 2002, pp. 345–355 (2002)Google Scholar
  2. 2.
    Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally Composable Protocols with Relaxed Set-up Assumptions. In: FOCS 2004, pp. 394–403 (2004)Google Scholar
  3. 3.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Eurocrypt 2003. LNCS, vol. 2045, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Yung, M.: Certifying cryptographic tools: The case of trapdoor permutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 442–460. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge. SIAM J. on Computing 20(6), 1084–1118 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 566. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions for non-interactive zero-knowledge proofs of knowledge for all NP relations. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 451. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without Interaction. In: FOCS 1992, pp. 427–436 (1992)Google Scholar
  9. 9.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM J. on Computing 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dwork, C., Naor, M.: Zaps and their Applications. In: FOCS 2000, pp. 283–293. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  11. 11.
    Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge Proofs Under General Assumptions. SIAM J. on Computing 29(1), 1–28 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In: STOC 1990, pp. 416–426. ACM, New York (1990)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Levin, L.: A Hard-Core Predicate for all One-Way Functions. In: STOC 1989, pp. 25–32 (1989)Google Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM 38(3), 691–729 (1991)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-Party Computation with a Dishonest Majority. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 578–595. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key Model. In: Pfitzmann, B. (ed.) EUROCRYPT 2001, vol. 2045, pp. 373–393. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Ostrovsky, R., Wigderson, A.: One-Way Functions are Essential for Non-Trivial Zero Knowledge. In: ISTCS 1993, pp. 3–17. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  20. 20.
    Persiano, G., Visconti, I.: On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared Random String Model (2006) Full version, available at
  21. 21.
    Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS 1999, pp. 543–553. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Giuseppe Persiano
    • 1
  • Ivan Visconti
    • 1
  1. 1.Dipartimento di Informatica ed Appl.Università di SalernoItaly

Personalised recommendations