Advertisement

On the Representation of Kleene Algebras with Tests

  • Dexter Kozen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)

Abstract

We investigate conditions under which a given Kleene algebra with tests is isomorphic to an algebra of binary relations. Two simple separation properties are identified that, along with star-continuity, are sufficient for nonstandard relational representation. An algebraic condition is identified that is necessary and sufficient for the construction to produce a standard representation.

Keywords

Binary Relation Boolean Algebra Relational Model Transitive Closure Relation Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Technical Report 2001-1844, Computer Science Department, Cornell University (2001)Google Scholar
  2. 2.
    Barth, A., Kozen, D.: Equational verification of cache blocking in LU decomposition using Kleene algebra with tests. Technical Report 2002-1865, Computer Science Department, Cornell University (2002)Google Scholar
  3. 3.
    Cohen, E.: Lazy caching in Kleene algebra (1994), http://citeseer.nj.nec.com/22581.html
  4. 4.
    Cohen, E.: Hypotheses in Kleene algebra. Technical Report TM-ARH-023814, Bellcore (1993), http://citeseer.nj.nec.com/1688.html
  5. 5.
    Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages and Systems 19(3), 427–443 (1997)CrossRefGoogle Scholar
  6. 6.
    Kozen, D., Patron, M.-C.: Certification of Compiler Optimizations: Using Kleene Algebra with Tests. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861, pp. 568–582. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Kozen, D.: On Hoare logic and Kleene algebra with tests. Trans. Computational Logic 1(1), 60–76 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests. Technical Report 96-1598, Computer Science Department, Cornell University (1996)Google Scholar
  9. 9.
    Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Bell, J., Slomson, A.: Models and Ultraproducts. North-Holland, Amsterdam (1971)MATHGoogle Scholar
  11. 11.
    Halmos, P.: Lectures on Boolean Algebras. Springer, Heidelberg (1974)MATHGoogle Scholar
  12. 12.
    McKinsey, J.: Postulates for the calculus of binary relations. J. Symb. Logic 5(3), 85–97 (1940)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tarski, A.: On the calculus of relations. J. Symb. Logic 6(3), 73–89 (1941)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Everett, C., Ulam, S.: Projective algebra I. Amer. J. Math. 68(1), 77–88 (1946)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jonsson, B., Tarski, A.: Representation problems for relation algebras. Bull. Amer. Math. Soc. 54, 80 abstract 89t (1948)Google Scholar
  16. 16.
    McKinsey, J.: On the representation of projective algebras. Amer. J. Math. 70, 375–384 (1948)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lyndon, R.: The representation of relation algebras. Ann. Math. 51(3), 707–729 (1950)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kozen, D.: On the representation of dynamic algebras. Technical Report RC7898, IBM Thomas J. Watson Research Center (1979)Google Scholar
  19. 19.
    Kozen, D.: On the duality of dynamic algebras and Kripke models. In: Engeler, E. (ed.) Logic of Programs 1979. LNCS, vol. 125, pp. 1–11. Springer, Heidelberg (1981)Google Scholar
  20. 20.
    Kozen, D.: On the representation of dynamic algebras II. Technical Report RC8290, IBM Thomas J. Watson Research Center (1980)Google Scholar
  21. 21.
    Kozen, D.: A representation theorem for models of *-free PDL. In: Proc. 7th Colloq. Automata, Languages, and Programming. EATCS, pp. 351–362 (1980)Google Scholar
  22. 22.
    Reiterman, J., Trnková, V.: Dynamic algebras which are not Kripke structures. In: Dembinski, P. (ed.) MFCS 1980. LNCS, vol. 88, pp. 528–538. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  23. 23.
    Németi, I.: Every free algebra in the variety generated by the representable dynamic algebras is separable and representable. Hungarian Academy of Sciences, Budapest (1980)Google Scholar
  24. 24.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  25. 25.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)MATHGoogle Scholar
  26. 26.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Infor. and Comput. 110(2), 366–390 (1994)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kozen, D., Tiuryn, J.: Substructural logic and partial correctness. Trans. Computational Logic 4(3), 355–378 (2003)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Möller, B., Struth, G.: Greedy-like algorithms in Kleene algebra. In: Proc. 2nd Int. Workshop on Applications of Kleene Algebra, pp. 173–180 (2003)Google Scholar
  30. 30.
    Ehm, T., Möller, B., Struth, G.: Kleene modules. In: Proc. 2nd Int. Workshop on Applications of Kleene Algebra, pp. 21–27 (2003)Google Scholar
  31. 31.
    Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic. Information Sciences 139(3–4), 187–195 (2001)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Kozen, D.: On the complexity of reasoning in Kleene algebra. Information and Computation 179, 152–162 (2002)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hardin, C., Kozen, D.: On the complexity of the Horn theory of REL. Technical Report 2003-1896, Computer Science Department, Cornell University (2003)Google Scholar
  34. 34.
    Hardin, C.: The Horn Theory of Relational Kleene Algebra. PhD thesis, Cornell University (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dexter Kozen
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations