Quantum Weakly Nondeterministic Communication Complexity

  • François Le Gall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


In this paper we study a weak version of quantum nondeterministic communication complexity, corresponding to the most natural generalization of classical nondeterminism, in which a classical proof has to be checked with probability one by a quantum protocol. We prove that, in the framework of communication complexity, even the weak version of quantum nondeterminism is strictly stronger than classical nondeterminism. More precisely, we show the first separation, for a total function, of quantum weakly nondeterministic and classical nondeterministic communication complexity. This separation is quadratic and shows that classical proofs can be checked more efficiently by quantum protocols than by classical ones.


Communication Complexity Query Complexity Total Function Check Procedure Quantum Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S.: Quantum Certificate Complexity. In: Proceedings of 18th Annual IEEE Conference on Computational Complexity, pp. 171–178 (2003)Google Scholar
  2. 2.
    Aaronson, S., Ambainis, A.: Quantum Search of Spatial Regions. Theory of Computing 1, 47–79 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Adleman, L.M., DeMarrais, J., Huang, M.A.: Quantum Computability. SIAM Journal on Computing 26(5), 1524–1540 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Babai, L., Snevily, H., Wilson, R.M.: A New Proof of Several Inequalities on Codes and Sets. Journal of Combinatorial Theory, Series A 71, 146–153 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential Separation of Quantum and Classical One-way Communication Complexity. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 128–137 (2004)Google Scholar
  6. 6.
    Bernstein, E., Vazirani, U.: Quantum Complexity Theory. SIAM Journal on Computing 26(5), 1411–1473 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buhrman, H.: Quantum Computing and Communication Complexity. Bulletin of the EATCS, pp. 131–141 (2000)Google Scholar
  8. 8.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. Classical Communication and Computation. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 63–68 (1998)Google Scholar
  9. 9.
    Buhrman, H., Fortnow, L., Newman, I., Röhrig, H.: Quantum Property Testing. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 480–488 (2003)Google Scholar
  10. 10.
    Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Res. Suppl. 10 (1973)Google Scholar
  11. 11.
    Delsarte, P.: The Association Schemes of Coding Theory. In: In “Combinatorics; Proceedings of the NATO Advanced Study Institute, Breukelen, Part 1, Math. Centre Tracts, Math. Centrum, No 55, Amsterdam, pp. 139–157 (1974)Google Scholar
  12. 12.
    Deutsch, D., Jozsa, R.: Rapid Solution of Problems by Quantum Computation. Proceedings of the Royal Society of London Series A 439, 553–558 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fenner, S., Green, F., Homer, S., Pruim, R.: Determining Acceptance Probability for a Quantum Computation is Hard for the Polynomial Hierarchy. Proceedings of the Royal Society of London Series A 455, 3953–3966 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fortnow, L., Rogers, J.: Complexity Limitations on Quantum Computation. Journal of Computern and System Sciences 59(2), 240–252 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Frankl, P.: Orthogonal Vectors in the n-dimensional Cube and Codes with Missing Distance. Combinatorica 6, 279–285 (1986)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Høyer, P., de Wolf, R.: Improved Quantum Communication Complexity Bounds for Disjointness and Equality. In: Proceedings of the 19th International Symposium of Theoretical Aspects of Computer Science, pp. 299–310 (2002)Google Scholar
  17. 17.
    Yu Kitaev, A.: Quantum NP. In: Public Talk at the 2nd Workshop on Algorithms in Quantum Information Processing (1999)Google Scholar
  18. 18.
    Klauck, H.: On Quantum and Probabilistic Communication: Las Vegas and One-way protocols. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 644–651 (2000)Google Scholar
  19. 19.
    Klauck, H.: Quantum Communication Complexity. In: Proceedings of the Workshop on Boolean Functions and Applications at the 27th International Colloquium on Automata, Languages and Programming, pp. 241–252 (2000)Google Scholar
  20. 20.
    Hromkovič, J.: Communication Complexity and Parallel Computation. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Knill, E.: Quantum Randomness and Nondeterminism. Los-Alamos e-print archive, quant-ph/9610012 (1996)Google Scholar
  22. 22.
    Massar, S., Bacon, D., Cerf, N., Cleve, R.: Classical Simulation of Quantum Entanglement without Local Hidden Variables. Physics Reviews A 63, 052305 (2001)Google Scholar
  23. 23.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  24. 24.
    Raz, R.: Exponential Separation of Quantum and Classical Communication Complexity. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 358–367 (1999)Google Scholar
  25. 25.
    Raz, R., Shpilka, A.: On the Power of Quantum Proofs. In: Proceedings of 19th Annual IEEE Conference on Computational Complexity, pp. 260–274 (2004)Google Scholar
  26. 26.
    Watrous, J.: Succint Quantum Proofs for Properties of Finite Groups. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 537–546 (2000)Google Scholar
  27. 27.
    de Wolf, R.: Quantum Communication and Complexity. Theoretical Computer Science 287(1), 337–353 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    de Wolf, R.: Nondeterministic Quantum Query and Communication Complexity. SIAM Journal on Computing 32(3), 681–699 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Yamakami, T., Yao, A.C.-C.: NQP C = co − C = P. Information Processing Letters 71, 63–69 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • François Le Gall
    • 1
    • 2
  1. 1.Department of Computer ScienceThe University of TokyoTokyoJapan
  2. 2.ERATO-SORST Quantum Computation and Information Project, JSTTokyoJapan

Personalised recommendations