Valiant’s Model: From Exponential Sums to Exponential Products

  • Pascal Koiran
  • Sylvain Perifel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We study the power of big products for computing multivariate polynomials in a Valiant-like framework. More precisely, we define a new class VΠP0 as the set of families of polynomials that are exponential products of easily computable polynomials. We investigate the consequences of the hypothesis that these big products are themselves easily computable. For instance, this hypothesis would imply that the nonuniform versions of P and NP coincide. Our main result relates this hypothesis to Blum, Shub and Smale’s algebraic version of P versus NP. Let K be a field of characteristic 0. Roughly speaking, we show that in order to separate P K from NP K using a problem from a fairly large class of “simple” problems, one should first be able to show that exponential products are not easily computable. The class of “simple” problems under consideration is the class of NP problems in the structure (K,+,–,=), in which multiplication is not allowed.


Turing Machine Arithmetic Circuit Polynomial Size Boolean Circuit Polynomial Size Circuit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Two theorems on random polynomial time. In: Proceedings of the 19th IEEE symposium on foundations of computer science, October 1978, pp. 75–83 (1978)Google Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)MATHGoogle Scholar
  5. 5.
    Fournier, H., Koiran, P.: Are lower bounds easier over the reals? In: Proc. 30th ACM Symposium on Theory of Computing, pp. 507–513 (1998)Google Scholar
  6. 6.
    Fournier, H., Koiran, P.: Lower bounds are not easier over the reals: Inside PH. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 832–843. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Heintz, J., Morgenstern, J.: On the intrinsic complexity of elimination theory. Journal of Complexity 9, 471–498 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’enseignement mathématique 28, 191–209 (1982)MATHMathSciNetGoogle Scholar
  9. 9.
    Koiran, P.: Valiant’s model and the cost of computing integers. Computational Complexity 13, 131–146 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Koiran, P.: Computing over the reals with addition and order. Theoretical Computer Science 133(1), 35–48 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lipton, R.J.: Straight-line complexity and integer factorization. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 71–79. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Malod, G.: Polynmes et coefficients. PhD thesis, Universit Claude Bernard Lyon (July 1, 2003)Google Scholar
  13. 13.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  14. 14.
    Poizat, B.: Les petits cailloux. Aléas (1995)Google Scholar
  15. 15.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(4), 701–717 (1980)MATHCrossRefGoogle Scholar
  16. 16.
    Shub, M., Smale, S.: On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “NP ≠ P?”. Duke Math. Journal 81(1), 47–54 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium on Theory of Computing, pp. 249–261 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pascal Koiran
    • 1
  • Sylvain Perifel
    • 1
  1. 1.LIPÉcole Normale Supérieure de Lyon 

Personalised recommendations