Advertisement

Systems of Equations over Finite Semigroups and the #CSP Dichotomy Conjecture

  • Ondřej Klíma
  • Benoît Larose
  • Pascal Tesson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)

Abstract

We study the complexity of counting the number of solutions to a system of equations over a fixed finite semigroup. We show that this problem is always either in FP or #P-complete and describe the borderline precisely. We use these results to convey some intuition about the conjectured dichotomy for the complexity of counting the number of solutions in constraint satisfaction problems.

Keywords

Abelian Group Equivalence Relation Direct Product Polynomial Time Algorithm Constraint Satisfaction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proc. of 43rd Foundations of Comp. Sci. (FOCS 2002), pp. 649–658 (2002)Google Scholar
  2. 2.
    Bulatov, A.: Tractable conservative constraint satisfaction problems. In: 18th IEEE Symp. on Logic in Comp. Sci. (LICS 2003), pp. 321–331 (2003)Google Scholar
  3. 3.
    Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. In: 44th IEEE Symp. on Foundations of Comp. Sci. (FOCS 2003), pp. 562–571 (2003)Google Scholar
  4. 4.
    Bulatov, A., Dalmau, V.: A simple algorithm for mal’tsev constraints. SIAM J. Comput. 36(1), 16–27 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem (to appear, 2006)Google Scholar
  6. 6.
    Bulatov, A., Grohe, M.: The complexity of partition functions. In: Proc. 31st Int. Coll. on Automata Languages and Programming, pp. 294–306 (2004)Google Scholar
  7. 7.
    Bulatov, A., Krokhin, A., Jeavons, P.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125(1), 1–12 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dalmau, V., Gavaldá, R., Tesson, P., Thérien, D.: Tractable clones of polynomials over semigroups. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 196–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. on Computing 28(1), 57–104 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Howie, J.: Fundamentals of Semigroup Theory. Claredon Press, Oxford (1995)MATHGoogle Scholar
  12. 12.
    Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200(1-2), 185–204 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Klíma, O., Tesson, P., Thérien, D.: Dichotomies in the complexity of solving systems of equations over finite semigroups. Theory of Computing Systems (2006)Google Scholar
  15. 15.
    Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Internat. J. Algebra and Computation, 17 (2006) (to appear)Google Scholar
  16. 16.
    McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices and Varieties. Wadsworth and Brooks/Cole (1987)Google Scholar
  17. 17.
    Nordh, G.: The complexity of equivalence and isomorphism of systems of equations over finite groups. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 380–391. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Nordh, G., Jonsson, P.: The complexity of counting solutions to systems of equations over finite semigroups. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 370–379. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th ACM STOC, pp. 216–226 (1978)Google Scholar
  20. 20.
    Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ondřej Klíma
    • 1
  • Benoît Larose
    • 2
  • Pascal Tesson
    • 3
  1. 1.Department of MathematicsMasaryk University 
  2. 2.Department of Mathematics and StatisticsConcordia University 
  3. 3.Département d’Informatique et de Génie LogicielUniversité Laval 

Personalised recommendations