Generalised Integer Programming Based on Logically Defined Relations

  • Peter Jonsson
  • Gustav Nordh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


Many combinatorial optimisation problems can be modelled as integer linear programs. We consider a class of generalised integer programs where the constraints are allowed to be taken from a broader set of relations (instead of just being linear inequalities). The set of allowed relations is defined using a many-valued logic and the resulting class of relations have provably strong modelling properties. We give sufficient conditions for when such problems are polynomial-time solvable and we prove that they are APX-hard otherwise.


Combinatorial Optimisation Problem Constraint Satisfaction Problem Unary Operation Integer Programming Problem Constraint Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999)MATHGoogle Scholar
  2. 2.
    Creignou, N., Hermann, M., Krokhin, A., Salzer, G.: Complexity of clausal constraints over chains (2006). To appear in: Theory of Computing Systems (2006), Preliminary version available from
  3. 3.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)MATHCrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  5. 5.
    J. Gil, À., Hermann, M., Salzer, G., Zanuttini, B.: Efficient algorithms for constraint description problems over finite totally ordered domains. In: Proceedings of Automated Reasoning, Second International Joint Conference (IJCAR 2004), pp. 244–258 (2004)Google Scholar
  6. 6.
    Hähnle, R.: Complexity of many-valued logics. In: Proceedings of the 31st IEEE International Symposium on Multiple-valued Logic (ISMVL 2001), pp. 137–148 (2001)Google Scholar
  7. 7.
    Hooker, J.N., Osorio, M.: Mixed logical-linear programming. Discrete Applied Mathematics 96-97, 395–442 (1999)Google Scholar
  8. 8.
    Jeavons, P.G., Cooper, M.C.: Tractable constraints on ordered domains. Artificial Intelligence 79, 327–339 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jonsson, P.: Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights. Theoretical Computer Science 244(1-2), 189–203 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ladner, R.E.: On the structure of polynomial time reducibility. Journal of the ACM 22(1), 155–171 (1975)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pöschel, R., Kalužnin, L.: Funktionen- und Relationenalgebren. DVW, Berlin (1979)Google Scholar
  13. 13.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in polynomial time. Journal of Combinatorial Theory, ser. B 80, 346–355 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wolfman, S.A., Weld, D.S.: The LPSAT engine & its application to resource planning. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 310–317 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Jonsson
    • 1
  • Gustav Nordh
    • 1
  1. 1.Department of Computer and Information ScienceLinköpings UniversitetLinköpingSweden

Personalised recommendations