Reductions for Monotone Boolean Circuits

  • Kazuo Iwama
  • Hiroki Morizumi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


The large class, say NLOG, of Boolean functions, including 0-1 Sort and 0-1 Merge, have an upper bound of O(nlogn) for their monotone circuit size, i.e., have circuits with O(nlogn) AND/OR gates of fan-in two. Suppose that we can use, besides such normal AND/OR gates, any number of more powerful “F-gates” which realize a monotone Boolean function F with r (≥2) inputs and r′ (≥1) outputs. Note that the cost of each AND/OR gate is one and we assume that the cost of each F-gate is r. Now we define: A Boolean function f in NLOG is said to be F-Easy if f can be constructed by a circuit with AND/OR/F gates whose total cost is o(nlogn). In this paper we show that 0-1 Merge is not F-Easy for an arbitrary monotone function F such that r′ ≤r/logr.


Boolean Function Output Terminal Boolean Circuit Input Terminal Input Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreev, A.E.: On a Method for Obtaining Lower Bounds for the Complexity of Individual Monotone Functions. Sov. Math. Doklady 31(3), 530–534 (1985)MATHGoogle Scholar
  2. 2.
    Ajtai, M., Komlós, J., Szemerédi, E.: An O(nlogn) Sorting Network. In: Proc. 15th STOC, pp. 1–9 (1983)Google Scholar
  3. 3.
    Amano, K., Maruoka, A.: A Superpolynomial Lower Bound for a Circuit Computing the Clique Function with at most (1/6)loglogn Negation Gates. SIAM J. Comput. 35(1), 201–216 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Amano, K., Maruoka, A., Tarui, J.: On the Negation-Limited Circuit Complexity of Merging. Discrete Applied Mathematics 126(1), 3–8 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beals, R., Nishino, T., Tanaka, K.: On the Complexity of Negation-Limited Boolean Networks. SIAM J. Comput. 27(5), 1334–1347 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dunne, P.E.: Lower Bound on the Monotone Network Complexity of Threshold Functions. In: Proc. 22nd Ann. Allerton Conf. on Communication, Control and Computing, pp. 911–920 (1984)Google Scholar
  7. 7.
    Harnik, D., Raz, R.: Higher Lower Bounds on Monotone Size. In: Proc. 32th STOC, pp. 378–387 (2000)Google Scholar
  8. 8.
    Iwama, K., Morizumi, H.: An Explicit Lower Bound of 5n-o(n) for Boolean Circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Iwama, K., Morizumi, H., Tarui, J.: Lower Bounds on the Negation-Limited Circuit Complexity (manuscript) (2006)Google Scholar
  10. 10.
    Lamagna, E.A.: The Complexity of Monotone Networks for Certain Bilinear Forms, Routing Problems, Sorting, and Merging. IEEE Trans. Computers 28(10), 773–782 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Long, D.: The Monotone Circuit Complexity of Threshold Functions. University of Oxford (unpublished manuscript) (1986)Google Scholar
  12. 12.
    Lachish, O., Raz, R.: Explicit Lower Bound of 4.5n − o(n) for Boolean Circuits. In: Proc. 33th STOC, pp. 399–408 (2001)Google Scholar
  13. 13.
    Lamagna, E.A., Savage, J.E.: Combinational Complexity of Some Monotone Functions. In: Proc. 15th Ann. IEEE Symp. on Switching and Automata Theory, pp. 140–144 (1974)Google Scholar
  14. 14.
    Oruç, A.Y.: A Study of Permutation Networks: New Designs and Some Generalizations. J. Parallel Distrib. Comput. 22(2), 359–366 (1994)CrossRefGoogle Scholar
  15. 15.
    Pippenger, N., Valiant, L.G.: Shifting Graphs and Their Applications. J. ACM 23(3), 423–432 (1976)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Razborov, A.A.: Lower Bounds on the Monotone Complexity of Some Boolean Functions. Sov. Math. Doklady 31, 354–357 (1985)MATHGoogle Scholar
  17. 17.
    Schnorr, C.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 155–171 (1974)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sung, S.C., Tanaka, K.: Lower Bounds on Negation-Limited Inverters. In: Proc. 2nd DMTCS, pp. 360–368 (1999)Google Scholar
  19. 19.
    Sung, S.C., Tanaka, K.: An Exponential Gap with the Removal of One Negation Gate. Inf. Process. Lett. 82(3), 155–157 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tanaka, K., Nishino, T., Beals, R.: Negation-Limited Circuit Complexity of Symmetric Functions. Inf. Process. Lett. 59(5), 273–279 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Valiant, L.G.: Short Monotone Formulae for the Majority Function. J. Algorithms 5(3), 363–366 (1984)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science (1987)Google Scholar
  23. 23.
    Zwick, U.: A 4n Lower Bound on the Combinatorial Complexity of Certain Symmetric Boolean Functions over the Basis of Unate Dyadic Boolean Functions. SIAM J. Comput. 20, 499–505 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kazuo Iwama
    • 1
  • Hiroki Morizumi
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations