NOF-Multiparty Information Complexity Bounds for Pointer Jumping

  • Andre Gronemeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We prove a lower bound on the communication complexity of pointer jumping for multiparty one-way protocols in the number on the forehead model that satisfy a certain information theoretical restriction: We consider protocols for which the ith player may only reveal information about the first i+1 inputs. To this end we extend the information complexity approach of Chakrabarti, Shi, Wirth, and Yao (2001) and Bar-Yossef, Jayram, Kumar, and Sivakumar (2004) to our restricted version of the multiparty number on the forehead model. The best currently known multiparty protocol for pointer jumping by Damm, Jukna, and Sgall (1998) works in this model.


Mutual Information Communication Complexity Information Complexity Conditional Entropy Conditional Mutual Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM J. Comput. 33, 137–166 (2004)CrossRefGoogle Scholar
  2. 2.
    Babai, L., Hayes, T.P., Kimmel, P.G.: The cost of the missing bit: Communication complexity with help. Combinatorica 21, 455–488 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45, 204–232 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory methods in communication complexity. In: Proc. of 17th CCC, pp. 93–102 (2002)Google Scholar
  5. 5.
    Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68, 702–732 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In: Proc. of 20th CCC, pp. 52–66 (2005)Google Scholar
  7. 7.
    Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proc. of 42nd FOCS, pp. 270–278 (2001)Google Scholar
  8. 8.
    Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proc. of 15th STOC, pp. 94–99 (1983)Google Scholar
  9. 9.
    Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM J. Discret. Math. 6, 110–125 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)MATHCrossRefGoogle Scholar
  11. 11.
    Damm, C., Jukna, S., Sgall, J.: Some bounds on multiparty communication complexity of pointer jumping. Comput. Complex. 7, 109–127 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  14. 14.
    Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM J. Comput. 22, 211–219 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ponzio, S., Radhakrishnan, J., Venkatesh, S.: The communication complexity of pointer chasing. J. Comput. Syst. Sci. 62, 323–355 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and communication complexity. SIAM J. Comput. 26, 605–633 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Comput. Complex. 9, 113–122 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proc. of 11th STOC, pp. 209–213 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andre Gronemeier
    • 1
  1. 1.FB Informatik, LS2Univ. DortmundDortmundGermany

Personalised recommendations