Smart Robot Teams Exploring Sparse Trees

  • M. Dynia
  • J. Kutyłowski
  • F. Meyer auf der Heide
  • C. Schindelhauer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We consider a tree which has to be completely explored by a group of k robots, initially placed at the root. The robots are mobile and can communicate using radio devices, but the communication range is bounded. They decide based on local, partial knowledge, and exchange information gathered during the exploration. There is no central authority which knows the graph and could control the movements of the robots – they have to organize themselves and jointly explore the tree.

The problem is that at every point of time the remaining unknown part of the tree may appear to be the worst case setting for the current deployment of robots. We present a deterministic distributed algorithm to explore T and we use a parameter of a tree called density. We compare the performance of our algorithm with the optimal algorithm having a-priori knowledge of the same tree. We show that the above ratio is influenced only by the density and the height of the tree. Since the competitive ratio does not depend on the number of robots, our algorithm truly emphasizes the phenomena of self-organization. The more robots are provided, the faster the exploration of the terrain is completed.


Mobile Robot Competitive Ratio Online Algorithm Discrete Apply Mathematic Graph Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, New York (1998)MATHGoogle Scholar
  2. 2.
    Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410 (1993)Google Scholar
  3. 3.
    Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM Journal on Computing 7, 178–193 (1978)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Averbakh, I., Berman, O.: Minmax p-traveling salesmen location problems on a tree. Annals of Operations Research 110, 55–68 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Operations Research Letters 32, 309–315 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Averbakh, I., Berman, O.: (p - 1)/(p + 1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discrete Applied Mathematics 75, 201–216 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discrete Applied Mathematics 68, 17–32 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bender, M., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. FOCS 1994, pp. 75–85 (1994)Google Scholar
  10. 10.
    Bender, M., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proc. 30th Symp. Theory of Computing, pp. 269–278. ACM, New York (1998)Google Scholar
  11. 11.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. In: SODA 1998: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 316–322. Society for Industrial and Applied Mathematics, Philadelphia (1998)Google Scholar
  12. 12.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot. Information and Computation 152, 155–172 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: Space lower bounds for graph exploration via reduced automata. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 140–154. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Dynia
    • 1
  • J. Kutyłowski
    • 2
  • F. Meyer auf der Heide
    • 3
  • C. Schindelhauer
    • 4
  1. 1.DFG Graduate College “Automatic Configuration in Open Systems”, Heinz Nixdorf InstituteUniversity of PaderbornGermany
  2. 2.International Graduate School of Dynamic Intelligent Systems, Heinz Nixdorf InstituteUniversity of PaderbornGermany
  3. 3.Heinz Nixdorf InstituteUniversity of PaderbornGermany
  4. 4.Computer Networks and TelematicsUniversity of FreiburgGermany

Personalised recommendations