Skip to main content

Optimal Linear Arrangement of Interval Graphs

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

We study the optimal linear arrangement (OLA) problem on interval graphs. Several linear layout problems that are NP-hard on general graphs are solvable in polynomial time on interval graphs. We prove that, quite surprisingly, optimal linear arrangement of interval graphs is NP-hard. The same result holds for permutation graphs. We present a lower bound and a simple and fast 2-approximation algorithm based on any interval model of the input graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedl, T., Brejova, B., Demaine, E., Hamel, A., Lopez-Ortiz, A., Vinar, T.: Finding Hidden Independent Sets in Interval Graphs. Theoretical Computer Science 310(1-3), 287–307 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Math. Appl., vol. 3. SIAM, Philadelphia (1999)

    Google Scholar 

  3. Chung, F.R.K.: Labelings of graphs. In: Selected Topics in graph theory, pp. 151–168. Academic Press, San Diego (1988)

    Google Scholar 

  4. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Computing Surveys 34(3), 313–356 (2002)

    Article  Google Scholar 

  5. Even, G., Naor, S., Schieber, B., Rao, S., Even, G.: Divide-and-conquer approximation algorithms via spreading metrics. Journal of the ACM 47(4), 585–616 (2000)

    Article  MathSciNet  Google Scholar 

  6. Even, S., Shiloach, Y.: NP-Completeness of Several Arrangement Problems, Technical Report #43, Computer Science Dept., The Technion, Haifa, Israel (1975)

    Google Scholar 

  7. Goldberg, M.A., Klipker, I.A.: Minimal placing of trees on a line, Technical report, Physico-Technical Institute of Low Temperatures, Academy of Sciences of Ukranian SSR, USSR (1976)

    Google Scholar 

  8. Farach-Colton, M., Huang, Y., Woolford, J.L.L.: Discovering temporal relations in molecular pathways using protein-protein interactions. In: Proceedings of the 8th Annual International Conference on Computational Molecular Biology (RECOMB), San Diego, California, USA, March 27-31, pp. 150–156. ACM Press, New York (2004)

    Google Scholar 

  9. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. System Sci. 60, 510–539 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34, 477–495 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory and Practice of NP-Completeness. W.H. Freeman, San Francisco (1979)

    Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  13. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 434–451 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kratsch, D., Stewart, L.K.: Approximating bandwidth by mixing layouts of interval graphs. SIAM Journal on Discrete Mathematics 15, 435–449 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. McConnell, R., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7, 505–512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rao, S., Richa, A.: New approximation techniques for some ordering problems. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), pp. 211–218. ACM, New York (1998)

    Google Scholar 

  19. Shiloach, Y.: A minimum linear arrangement algorithm for undirected trees. SIAM Journal on Computing 8, 15–32 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sprague, A.P.: An O(n logn) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Unger, W.: The complexity of the approximation of the bandwidth problem. In: Proceedings of the Thirty-ninth Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, CA (1998)

    Google Scholar 

  22. Waterman, M.: Introduction to computational biology: Maps, sequences and genomes. Chapman and Hall, Boca Raton (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, J., Fomin, F., Heggernes, P., Kratsch, D., Kucherov, G. (2006). Optimal Linear Arrangement of Interval Graphs. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_24

Download citation

  • DOI: https://doi.org/10.1007/11821069_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics