The Multiparty Communication Complexity of Exact-T: Improved Bounds and New Problems

  • Richard Beigel
  • William Gasarch
  • James Glenn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


Let x i ,...,x k be n-bit numbers and T ∈ ℕ. Assume that P 1,...,P k are players such that P i knows all of the numbers exceptx i . They want to determine if \(\sum^{k}_{j=1}{\it x}_{j}\)= T by broadcasting as few bits as possible. In [7] an upper bound of \(O(\sqrt n )\) bits was obtained for the k=3 case, and a lower bound of ω(1) for k ≥3 when T=Θ(2 n ). We obtain (1) for k ≥3 an upper bound of \(k+O((n+\log k)^{1/(\lfloor{\rm lg(2k-2)}\rfloor)})\), (2) for k=3, T=Θ(2 n ), a lower bound of Ω(loglogn), (3) a generalization of the protocol to abelian groups, (4) lower bounds on the multiparty communication complexity of some regular languages, and (5) empirical results for k = 3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babai, Nisan, Szegedy: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. JCSS 45 (1992)Google Scholar
  2. 2.
    Babai, L., Pudlak, P., Rodl, V., Szemeredi, E.: Lower bounds to the complexity of symmetric Boolean functions. TCS 74, 313–323 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. JCSS 38 (1989)Google Scholar
  4. 4.
    Barrington, D., Straubing, H.: Superlinear lower bounds for bounded width branching programs. JCSS 50 (1995)Google Scholar
  5. 5.
    Beame, P., Vee, E.: Time-space tradeoffs, multiparty communication complexity and nearest neighbor problems. In: 34th STOC (2002)Google Scholar
  6. 6.
    Behrend, F.: On set of integers which contain no three in arithmetic progression. Proc. of the Nat. Acad. of Sci (USA) 23, 331–332 (1946)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chandra, A., Furst, M., Lipton, R.: Multiparty protocols. In: 15th STOC, pp. 94–99 (1983)Google Scholar
  8. 8.
    Gasarch, W., Glenn, J.: Finding large sets without arithmetic progressions of length three: An empirical view (2005)Google Scholar
  9. 9.
    Graham, R., Rothchild, A., Spencer, J.: Ramsey Theory. Wiley, Chichester (1990)zbMATHGoogle Scholar
  10. 10.
    Graham, R., Solymosi, J.: Monochromatic equilateral right triangles on the integer grid (2005), see Solymosi’s websiteGoogle Scholar
  11. 11.
    Kushilevitz, E., Nisan, N.: Comm. Comp. Cambridge Univ. Press, Cambridge (1997)Google Scholar
  12. 12.
    Laba, I., Lacey, M.T.: On sets of integers not containing long arithmetic. progressions (2001), see
  13. 13.
    Moser, L.: On non-averaging sets of integers. Canadian Journal of Mathematics 5, 245–252 (1953)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pudlak, P.: A lower bound on complexity of branching programs. In: Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 480–489. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  15. 15.
    Rankin, R.: Sets of integers containing not more than a given number of terms in an arithmetic. progressions. Proc. of the Royal Soc. of Edinburgh Sect. A 65, 332–344 (1960–1961)Google Scholar
  16. 16.
    Raymond, J.-F., Tesson, P., Thérien, D.: An algebraic approach to communication complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 29–40. Springer, Heidelberg (1998); Also at Tesson WebsiteGoogle Scholar
  17. 17.
    Tesson, P.: Computational complexity questions related to finite monoids and semigroups. PhD thesis, McGill University (2003)Google Scholar
  18. 18.
    Tesson, P.: An application of the Hales-Jewitt Theorem to multiparty communication complexity (2004), See Gasarch’s Ramsey Website Google Scholar
  19. 19.
    Tesson, P., Therien, D.: Monoids and computations. Int. J. of Algebra and Computation, 115–163 (2004),
  20. 20.
    Tesson, P., Therien, D.: Complete classification of the communication complexity of regular languages. TOCS, 135–159 (2005)Google Scholar
  21. 21.
    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Application. SIAM, Philadelphia (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Richard Beigel
    • 1
  • William Gasarch
    • 2
  • James Glenn
    • 3
  1. 1.Dept. of Computer and Information SciencesTemple UniversityPhiladelphia
  2. 2.Dept. of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege Park
  3. 3.Dept. of Computer ScienceLoyola College in MarylandBaltimore

Personalised recommendations