Filament Enhancement by Non-linear Volumetric Filtering Using Clustering-Based Connectivity

  • Georgios K. Ouzounis
  • Michael H. F. Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


Shape filters are a family of connected morphological operators that have been used for filament enhancement in biomedical imaging. They interact with connected image regions rather than individual pixels, which can either be removed or retained unmodified. This prevents edge distortion and noise amplification, a property particularly appreciated in filtering and segmentation. In this paper we investigate their performance using a generalized notion of connectivity that is referred to as ”clustering-based connectivity”. We show that we can capture thin fragmented structures which are filtered out with existing techniques.


Human Head Difference Volume Mathematical Morphology Strong Cluster Magnetic Resonance Angiogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braga-Neto, U.M., Goutsias, J.: Connectivity on complete lattices: New results. Comp. Vis. Image Understand. 85, 22–53 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Maragos, P., Ziff, R.D.: Threshold superposition in morphological image analysis systems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)CrossRefGoogle Scholar
  3. 3.
    Orkisz, M., Hernández-Hoyos, M., Douek, P., Magnin, I.: Advances of blood vessel morphology analysis in 3D magnetic resonance images. Mach. Vis. Graph. 9, 463–471 (2000)Google Scholar
  4. 4.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. In: IEEE Trans. Pattern Anal. Mach. Intell. (submitted, 2005)Google Scholar
  5. 5.
    Ouzounis, G.K., Wilkinson, M.H.F.: Second-order connected attribute filters using max-trees. In: Ronse, C., Najman, L., Decenciére, E. (eds.) Mathematical Morphology: 40 Years On; Proc. 7th Int. Symp. Math. Morphology, pp. 65–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. Journal of Mathematical Imaging and Vision 8, 41–58 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)CrossRefGoogle Scholar
  8. 8.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology. II: Theoretical Advances. Academic Press, London (1988)Google Scholar
  9. 9.
    Serra, J.: Connectivity on complete lattices. Journal of Mathematical Imaging and Vision 9, 231–251 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology; Proc. 6th Int. Symp. Math. Morphology, Collingwood, Australia, pp. 305–314. CSIRO Publishing (2002)Google Scholar
  11. 11.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georgios K. Ouzounis
    • 1
  • Michael H. F. Wilkinson
    • 1
  1. 1.Institute of Mathematics and Computing ScienceUniversity of GroningenAV GroningenThe Netherlands

Personalised recommendations